Auto Scanner® Plus

P/N 0002-001-3119
Scan Tool Information

Complete the following list using the function “**Tool Information**”. Provide this information when contacting customer support.

Serial No:	________________
SW ID:	________________
HW Ver:	________________
Boot Ver:	________________
Prod ID:	________________
Board ID:	________________
Burn Date:	________________
Burn Loc:	________________

If you have questions or concerns Contact

Technical Support:

Phone: 1-800-228-7667
Mail: SPX Service Solutions
655 Eisenhower Dr.
Owatonna, MN 55060
Attn: Technical Support

Copyright © 2010 SPX Corporation
All rights reserved.

The information, specifications and illustrations in this guide are based on the latest information available at the time of printing. **SPX Corporation** reserves the right to make changes at any time without notice.
Table of Contents

Safety Precautions

| Important Safety Messages | iii |

Section 1 – Using This Manual

Section 2 – Getting Started

<table>
<thead>
<tr>
<th>Introduction</th>
<th>2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Scanning Suite</td>
<td>2-2</td>
</tr>
<tr>
<td>Vehicle Service Information</td>
<td>2-3</td>
</tr>
<tr>
<td>OBD II</td>
<td>2-5</td>
</tr>
<tr>
<td>SAE Publications</td>
<td>2-6</td>
</tr>
<tr>
<td>Data Link Connector (DLC)</td>
<td>2-7</td>
</tr>
<tr>
<td>OBD II Diagnostic Trouble Codes (DTCs)</td>
<td>2-8</td>
</tr>
</tbody>
</table>

Section 3 – Using The Scan Tool

<table>
<thead>
<tr>
<th>The Scan Tool</th>
<th>3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications</td>
<td>3-2</td>
</tr>
<tr>
<td>Display</td>
<td>3-3</td>
</tr>
<tr>
<td>Keypad</td>
<td>3-3</td>
</tr>
<tr>
<td>Power</td>
<td>3-4</td>
</tr>
<tr>
<td>System Setup</td>
<td>3-5</td>
</tr>
<tr>
<td>Changing Measurement Units</td>
<td>3-6</td>
</tr>
<tr>
<td>Changing Display Contrast</td>
<td>3-7</td>
</tr>
<tr>
<td>Changing Auto-Power Off</td>
<td>3-7</td>
</tr>
<tr>
<td>Quick Test</td>
<td>3-9</td>
</tr>
<tr>
<td>Print Header</td>
<td>3-9</td>
</tr>
<tr>
<td>Language Setup</td>
<td>3-11</td>
</tr>
<tr>
<td>Long PID Names</td>
<td>3-12</td>
</tr>
<tr>
<td>View Tool Information</td>
<td>3-13</td>
</tr>
<tr>
<td>Display Test</td>
<td>3-14</td>
</tr>
<tr>
<td>Keypad Test</td>
<td>3-15</td>
</tr>
<tr>
<td>Memory Test</td>
<td>3-15</td>
</tr>
<tr>
<td>Program Mode</td>
<td>3-17</td>
</tr>
<tr>
<td>Vehicle-Specific Features</td>
<td>3-18</td>
</tr>
<tr>
<td>Review Data</td>
<td>3-18</td>
</tr>
<tr>
<td>Recording</td>
<td>3-19</td>
</tr>
<tr>
<td>Print Data</td>
<td>3-20</td>
</tr>
<tr>
<td>Code Lookup</td>
<td>3-22</td>
</tr>
<tr>
<td>Connecting The Scan Tool</td>
<td>3-24</td>
</tr>
<tr>
<td>Vehicle Selection</td>
<td>3-24</td>
</tr>
<tr>
<td>CodeConnect® Feature</td>
<td>3-27</td>
</tr>
</tbody>
</table>
Safety Precautions

For your safety, read this manual thoroughly before operating your Scan Tool. Always refer to and follow safety messages and test procedures provided by the manufacturer of the vehicle or equipment being tested.

The safety messages presented below and throughout this user’s manual are reminders to the operator to exercise extreme care when using this test instrument.

Read All Instructions

Read, understand and follow all safety messages and instructions in this manual and on the test equipment. Safety messages in this section of the manual contain a signal word with a three-part message and, in some instances, an icon.

Safety Messages

Safety messages are provided to help prevent personal injury and equipment damage. All safety messages are introduced by a signal word. The signal word indicates the level of the hazard in a situation. The types of safety messages are.

- **DANGER** Indicates a possible hazardous situation which, if not avoided, will result in death or serious injury to operator or bystanders.

- **WARNING** Indicates a possible hazardous situation which, if not avoided, could result in death or serious injury to operator or bystanders.

- **CAUTION** Indicates a possible hazardous situation which, if not avoided, may result in moderate or minor injury to operator or bystanders.

- **IMPORTANT** Indicates a condition which, if not avoided, may result in damage to test equipment or vehicle.
Safety Precautions

Type Styles Used:

Safety messages contain three different type styles.

• Normal type states the hazard.
• Bold type states how to avoid the hazard.
• Italic type states the possible consequences of not avoiding the hazard.

Icons used:

An icon, when present, gives a graphical description of a potential hazard.

Example:

Engine systems can malfunction expelling fuel, oil vapors, hot steam, hot toxic exhaust gases, acid, refrigerant and other debris.

Safety goggles and protective gloves must be worn by the operator and any bystanders. Even if everyday eyeglasses have impact resistant lenses, they are NOT safety glasses.

Engine systems that malfunction can cause injury.
Safety Precautions

Important Safety Messages

Risk of electric shock.

- Do not exceed voltage limits between inputs indicated in the Specifications.

- Use extreme caution when working with circuits that have voltage greater than 60 volts DC or 24 volts AC.

Electric shock can cause injury.

Risk of explosion.

- Safety goggles and protective clothing must be worn by the operator and any bystanders.
 - Even if everyday glasses have impact resistant lenses, they are NOT safety glasses, and may not provide adequate protection.

- Do not use this scan tool in environments where explosive vapors may collect. These areas include:
 - below-ground pits.
 - confined areas.
 - areas that are less than 18 inches above floor.

- Use this Scan Tool in locations with mechanical ventilation providing at least 4 air changes per hour.

- Flammable fuel and vapors can ignite.

- Do not smoke, strike a match, or cause a spark in the vicinity of the battery. Battery gases can ignite.

- Avoid making an accidental connection between the battery terminals. Do not place uninsulated metal tools on the battery.

- When removing battery cables, remove the ground cable first.
Safety Precautions

• Avoid sparks when connecting or disconnecting power leads to the battery.

• Make sure ignition is off, headlights and other accessories are off and vehicle doors are closed before disconnecting the battery cables.
 - This also helps prevent damage to on-board computer systems.

• Always disconnect the battery ground connections before servicing electrical system components.

 Explosion can cause injury.

Risk of poisoning.

• Use this Scan Tool in locations with mechanical ventilation providing at least 4 air changes per hour.
 Engine exhaust contains odorless gas which can be lethal.

• Route the exhaust outside while testing with the engine running.

 Poisoning can result in death or serious injury.

Battery acid is a highly corrosive sulfuric acid.

• Safety goggles and protective gloves must be worn by the operator and any bystanders.
 - Even if your everyday glasses have impact resistant lenses, they are NOT safety glasses, and may not provide adequate protection.

• Make sure someone can hear you or is close enough to provide aid when working near a battery.

• Have plenty of fresh water and soap nearby.
 - If battery acid contacts skin, clothing, or eyes, flush exposed area with soap and water for 10 minutes.
 - Seek medical help.

• Do not touch eyes while working near battery.
Safety Precautions

Battery acid can burn eyes and skin.

WARNING

- Safety goggles and protective clothing must be worn by the operator and any bystanders.
 - Even if your everyday glasses have impact resistant lenses, they are NOT safety glasses, and may not provide adequate protection.

- Do not position your head directly in front of or over the throttle body.

- Do not pour gasoline down the throttle body when cranking or running the engine, when working with fuel delivery systems or any open fuel line.
 - Engine backfire can occur when the air cleaner is out of position.

- Do not use fuel injector cleaning solvents when performing diagnostic testing.

- Keep cigarettes, sparks, open flame and other sources of ignition away from vehicle.

- Keep a dry chemical (Class B) fire extinguisher rated for gasoline, chemical and electrical fires in work area.

 Fire can cause death or serious injury.

WARNING

- Safety goggles and protective gloves must be worn by the operator and any bystanders while using electrical equipment.
 - Electrical equipment or rotating engine parts can cause flying particles.
 - Even if your everyday glasses have impact resistant lenses, they are NOT safety glasses, and may not provide adequate protection.

 Flying particles can cause eye injury.
Safety Precautions

Risk of burns.

- Batteries can produce a short-circuit current high enough to weld jewelry to metal.
 - Remove jewelry such as rings, bracelets and watches before working near batteries.

Short circuits can cause injury.

Risk of burns.

- Do not remove radiator cap unless engine is cold.
 - Pressurized engine coolant may be hot.

- Do not touch hot exhaust systems, manifolds, engines, radiators, sample probe.

- Wear insulated gloves when handling hot engine components.

- Tester leads can become hot after extended testing in close proximity to manifolds.

Hot components can cause injury.

Risk of expelling fuel, oil vapors, hot steam, hot toxic exhaust gases, acid, refrigerant and other debris.

- Safety goggles and protective clothing must be worn by the operator and any bystanders.
 - Even if your everyday glasses have impact resistant lenses, they are NOT safety glasses, and may not provide adequate protection.

- Engine systems can malfunction, expelling fuel, oil vapors, hot steam, hot toxic exhaust gases, acid, refrigerant and other debris.

Fuel, oil vapors, hot steam, hot toxic exhaust gases, acid, refrigerant and other debris can cause serious injury.
Safety Precautions

Engine compartment contains electrical connections and hot or moving parts.

- Keep yourself, test leads, clothing and other objects clear of electrical connections and hot or moving engine parts.

- Do not wear watches, rings, or loose fitting clothing when working in an engine compartment.

- Do not place tools or test equipment on fenders or other places in engine compartment.

- Barriers are recommended to help identify danger zones in test area.

- Prevent personnel from walking through test area.

Contacting electrical connections and hot or moving parts can cause injury.

Risk of injury.

- The Scan Tool should be operated by qualified personnel only.

- Use the scan tool only as described in the user’s manual.

- Use only manufacturer’s recommended attachments.

- Do not operate the Scan Tool with damaged cables.

- Do not operate the Scan Tool if it has been dropped or damaged, until examined by a qualified service representative.

Operation of the Scan Tool by anyone other than qualified personnel may result in injury.
Safety Precautions

WARNING

Risk of unexpected vehicle movement.

- **Block drive wheels before performing a test with engine running.**

- **Unless instructed otherwise:**
 - set parking brake
 - put gear selector in neutral for manual transmissions
 - put gear selector in park for automatic transmissions
 - disconnect release mechanism on the automatic parking brake release for testing and reconnect when testing is completed.

- **Do not leave a running engine unattended.**

A moving vehicle can cause injury.

CAUTION

Risk of equipment or circuit damage.

- **Unless specifically directed by manufacturer, make sure ignition is off before connecting or disconnecting connectors or any vehicle electrical terminals.**

- **Do not create a short between battery terminals with a jumper wire or tools.**

Improper equipment use can cause equipment or circuit damage.

CAUTION

Misdiagnosis may lead to incorrect or improper repair and/or adjustment.

- **Do not rely on erratic, questionable, or obviously erroneous test information or results.**
 - If test information or results are erratic, questionable, or obviously erroneous, make sure all connections and data entry information are correct and test procedures were performed correctly.
 - If test information or results are still suspicious, do not use them for diagnosis.
Safety Precautions

Improper repair and/or adjustment may cause vehicle or equipment damage or unsafe operation.

Some vehicles are equipped with air bags.

⚠️ DANGER

- Follow service manual warnings when working around air bag components or wiring.
 - If service manual instructions are not followed, an air bag may deploy unexpectedly, resulting in injury.
 - Note an air bag can still deploy several minutes after ignition key is off (or even if vehicle battery is disconnected) because of a special energy reserve module.

An air bag opening can cause injury.
Safety Precautions
Section 1 – Using This Manual

This manual contains instructions for the use and setup of your Scan Tool.

Safety Messages
Refer to Safety Precautions on page Safety - i.

Check Note
A check note provides additional information about the subject in the preceding paragraph.
Example:
✓ English is the default measurement unit.

Equipment Tips and Lists
Equipment tips and lists provide information that applies to specific equipment. Each tip is introduced by this icon for easy identification.
Example:
❒ Observe all vehicle and/or equipment manufacturer’s cautions and warnings when testing with the Scan Tool.

Equipment Damage
Situations arise during testing that could damage the vehicle or the test equipment. The word IMPORTANT signals these situations.
Example:

IMPORTANT Failure to follow these instructions could damage the Scan Tool.
Functions and Selections
Diagnostic and tool functions performed by the Scan Tool are highlighted in bold.

Example:
The View Data function allows you to view the vehicle’s parameter identification (PID) data in real time.

Menus
The menus on the Scan Tool display are referenced in the procedures and are highlighted in bold-italic text.

Example:
When the Main Menu displays, the Scan Tool is ready for use.

Questions and Responses
Messages and user responses are CAPITALIZED.

Example:
The Scan Tool displays the pending DTCs or a message stating SYSTEM PASS: NO FAULT DETECTED.

Manual References
Used to reference other sections of the manual. References include the Title and page number (section-page).

Example:
For more information on DTCs, refer to “OBD II Diagnostic Trouble Codes (DTCs)” on page 2-9.

Screens
Certain help messages, information, and data that are displayed on the scan tool are also shown in graphical text boxes. The screens are presented as examples and may change as the software is updated.

Example:
Section 2 – Getting Started

Introduction

The Scan Tool was developed by experts in the automotive service industry to help diagnose vehicles and assist in troubleshooting procedures.

The Scan Tool monitors vehicle events and retrieves codes from the vehicle's control modules to help pinpoint problem areas.

All information, illustrations and specifications contained in this manual are based on the latest information available from industry sources at the time of publication.

No warranty (expressed or implied) can be made for its accuracy or completeness, nor is any responsibility assumed by the manufacturer or anyone connected with it for loss or damages suffered through reliance on any information contained in this manual or misuse of accompanying product. The manufacturer reserves the right to make changes at any time to this manual or accompanying product without obligation to notify any person or organization of such changes.
Download Scanning Suite

✓ Go to www.actron.com/downloads to download the Scanning Suite PC application.

✓ Scanning Suite is NOT required to operate the Scan Tool

✓ Install the downloaded Scanning Suite application prior to connecting the Scan Tool to the PC.

✓ Some of the items included in Scanning Suite are:
 ❑ A link to the User Manual for the Scan Tool
 ❑ Tool update software
 ❑ A link to the Adobe Acrobat Reader Installer
 ❑ Print Capture
 ❑ Other product information
 ❑ A link to DTC Lookup on Actron.com

✓ To be able to use Scanning Suite the PC must meet the following minimum requirements:
 ❑ Microsoft Windows XP, Vista, and 7
 ❑ Adobe Acrobat Reader
 ❑ Screen Resolution of 800 x 600
 – If screen resolution is 800 x 600, in Display Properties, Settings Tab, set Font Size to Small Fonts.

✓ Use Scanning Suite to determine if any updates are available for your tool by clicking Check for Update button.

✓ Check for updates to Use Scanning Suite by clicking on the Check For Scanning Suite Update button. This should be done prior to checking for Tool Updates.

✓ You can also configure the Scanning Suite Frequency (SS Frequency) to automatically check every xx minutes. The default frequency is 7 days.

✓ Refer to instructions provided on www.actron.com/downloads for how to install Scanning Suite and Tool updates.
Vehicle Service Information

The following is a list of web sites and phone numbers where electronic engine control (EEC) diagnostic information is available.

✓ Some manuals may be available at your local dealer, auto parts stores or local public libraries.

<table>
<thead>
<tr>
<th>Domestic Vehicles</th>
<th>Web Site</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Motors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevrolet</td>
<td>www.chevrolet.com</td>
<td>1-800-551-4123</td>
</tr>
<tr>
<td>Pontiac</td>
<td>www.pontiac.com</td>
<td>1-800-551-4123</td>
</tr>
<tr>
<td>Oldsmobile</td>
<td>www.oldsmobile.com</td>
<td>1-800-551-4123</td>
</tr>
<tr>
<td>Buick</td>
<td>www.buick.com</td>
<td>1-800-551-4123</td>
</tr>
<tr>
<td>Cadillac</td>
<td>www.cadillac.com</td>
<td>1-800-333-4CAD</td>
</tr>
<tr>
<td>Saturn</td>
<td>www.saturn.com</td>
<td>1-800-553-6000</td>
</tr>
<tr>
<td>Ford</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ford</td>
<td>www.ford.com</td>
<td>1-800-392-3673</td>
</tr>
<tr>
<td>Lincoln</td>
<td>www.lincoln.com</td>
<td>1-800-392-3673</td>
</tr>
<tr>
<td>Mercury</td>
<td>www.mercury.com</td>
<td>1-800-392-3673</td>
</tr>
<tr>
<td>Chrysler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysler</td>
<td>www.chrysler.com</td>
<td>1-800-348-4696</td>
</tr>
<tr>
<td>Dodge</td>
<td>www.dodge.com</td>
<td>1-800-348-4696</td>
</tr>
<tr>
<td>Plymouth</td>
<td>Not Available</td>
<td>1-800-348-4696</td>
</tr>
<tr>
<td>Eagle</td>
<td>Not Available</td>
<td>1-800-348-4696</td>
</tr>
<tr>
<td>European Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audi</td>
<td>www.audi.com</td>
<td>1-800-544-8021</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>www.vw.com</td>
<td>1-800-544-8021</td>
</tr>
<tr>
<td>BMW</td>
<td>www.bmw.com</td>
<td>1-201-307-4000</td>
</tr>
<tr>
<td>MINI</td>
<td>www.mini.com</td>
<td>1-201-307-4000</td>
</tr>
<tr>
<td>Jaguar</td>
<td>www.jaguar.com</td>
<td>1-800-4-JAGUAR</td>
</tr>
<tr>
<td>Volvo</td>
<td>www.volvo.com</td>
<td>1-800-458-1552</td>
</tr>
<tr>
<td>Mercedes-Benz</td>
<td>www.mercedes-benz.com</td>
<td>1-800-367-6372</td>
</tr>
<tr>
<td>Land Rover</td>
<td>www.landrover.com</td>
<td>1-800-637-6837</td>
</tr>
<tr>
<td>Porsche</td>
<td>www.porsche.com</td>
<td>1-800-PORSCHE</td>
</tr>
<tr>
<td>Saab</td>
<td>www.saab.com</td>
<td>1-800-955-9007</td>
</tr>
</tbody>
</table>
Asian Vehicles

<table>
<thead>
<tr>
<th>Make</th>
<th>Web Site</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acura</td>
<td>www.acura.com</td>
<td>1-800-999-1009</td>
</tr>
<tr>
<td>Honda</td>
<td>www.honda.com</td>
<td>1-800-999-1009</td>
</tr>
<tr>
<td>Lexus</td>
<td>www.lexus.com</td>
<td>1-800-255-3987</td>
</tr>
<tr>
<td>Scion</td>
<td>www.scion.com</td>
<td>1.866.70.SCION</td>
</tr>
<tr>
<td>Toyota</td>
<td>www.toyota.com</td>
<td>1-800-GO-TOYOTA</td>
</tr>
<tr>
<td>Hyundai</td>
<td>www.hyundai.com</td>
<td>1-800-633-5151</td>
</tr>
<tr>
<td>Infiniti</td>
<td>www.infiniti.com</td>
<td>1-800-662-6200</td>
</tr>
<tr>
<td>Nissan</td>
<td>www.nissanusa.com</td>
<td>1-800-nissan1</td>
</tr>
<tr>
<td>Kia</td>
<td>www.kia.com</td>
<td>1-800-333-4542</td>
</tr>
<tr>
<td>Mazda</td>
<td>www.mazda.com</td>
<td>1-800-222-5500</td>
</tr>
<tr>
<td>Daewoo</td>
<td>www.daewoo.com</td>
<td>1-822-759-2114</td>
</tr>
<tr>
<td>Subaru</td>
<td>www.subaru.com</td>
<td>1-800-SUBARU3</td>
</tr>
<tr>
<td>Isuzu</td>
<td>www.isuzu.com</td>
<td>1-800-255-6727</td>
</tr>
<tr>
<td>Geo</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>www.mitsubishi.com</td>
<td>1-888-MITSU2004</td>
</tr>
<tr>
<td>Suzuki</td>
<td>www.suzuki.com</td>
<td>1-800-934-0934</td>
</tr>
</tbody>
</table>

Other Manuals

<table>
<thead>
<tr>
<th>Company</th>
<th>Web Site</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilton Book Company</td>
<td>www.chiltonsonline.com</td>
<td>1-800-347-7707</td>
</tr>
<tr>
<td>Haynes Publications</td>
<td>www.haynes.com</td>
<td>1-800-242-4637</td>
</tr>
<tr>
<td>Bentley Publishers</td>
<td>www.bentleypublishers.com</td>
<td>1-800-423-4595</td>
</tr>
</tbody>
</table>

Repair Information Programs

<table>
<thead>
<tr>
<th>Name</th>
<th>Web Site</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitchell</td>
<td>www.mitchell1.com</td>
<td>1-888-724-6742</td>
</tr>
<tr>
<td>ALLDATA</td>
<td>www.alldata.com</td>
<td>1-800-697-2533</td>
</tr>
</tbody>
</table>

Suitable Manual Titles

- Diagnostic Service Manuals
- PowerTrain Codes and Oxygen Sensors
- Automotive Emission Control Manual
- Fuel Injection
- Automotive Electrical Manual
- Automotive Electrics and Electronics
- Automotive Sensors
- Electronic Transmission Control
- Emission Control Technology
- Engine Management
- or similar titles...
OBD II

On-board diagnostics version II (OBD II) is a system that the Society of Automotive Engineers (SAE) developed to standardize automotive electronic diagnosis.

Beginning in 1996, most new vehicles sold in the United States were fully OBD II compliant.

✓ Technicians can now use the same tool to test any OBD II compliant vehicle without special adapters. SAE established guidelines that provide:
 ❑ A universal connector, called the DLC, with dedicated pin assignments.
 ❑ A standard location for the DLC, visible under the dash on driver’s side.
 ❑ A standard list of diagnostic trouble codes (DTCs) used by all manufacturers.
 ❑ A standard list of parameter identification (PID) data used by all manufacturers.
 ❑ Ability for vehicle systems to record operating conditions when a fault occurs.
 ❑ Expanded diagnostic capabilities that records a code whenever a condition occurs that affects vehicle emissions.
 ❑ Ability to clear stored codes from the vehicle’s memory with a Scan Tool.
SAE Publications

SAE has published hundreds of pages of text defining a standard communication protocol that establishes hardware, software, and circuit parameters of OBD II systems. Unfortunately, vehicle manufacturers have different interpretations of this standard communications protocol. As a result, the generic OBD II communications scheme varies, depending on the vehicle. SAE publishes recommendations, not laws, but the Environmental Protection Agency (EPA) and California Air Resources Board (CARB) made many of SAE’s recommendations legal requirements that vehicle manufacturers were required to phase in over a three-year period. Beginning in 1994, vehicles with a new engine management computer (about 10% of each manufacturers fleet) were supposed to comply with OBD II standards. For 1995, OBD II systems were to appear on about 40% of the new vehicles sold in the United States. Some of the 1994-1995 OBD II systems were not fully compliant, so the Government granted waivers to give manufacturers time to fine-tune their systems. Beginning in 1996, most of the new vehicles sold in the United States were fully OBD II compliant.
Data Link Connector (DLC)

The data link connector (DLC) allows the Scan Tool to communicate with the vehicle’s computer(s).

Beginning in 1996, vehicles sold in the United States use the J1962 (OBD II) DLC, a term taken from a physical and electrical specification number assigned by the SAE (J1962). The DLC should be located under the dashboard on the driver's side of the vehicle. If the DLC is not located under the dashboard as stated, a decal describing its location should be attached to the dashboard in the area the DLC should have been located. For more information on OBD II connectors, go to http://www.obdclearinghouse.com/oemdb.

Data Link Connector (DLC) Pins

1 - Manufacturer Reserved
2 - J1850 Bus+
3 - Manufacturer Reserved
4 - Chassis Ground
5 - Signal Ground
6 - CAN High, J-2284
7 - K Line, ISO 9141-2 & ISO/DIS 14230-4
8 - Manufacturer Reserved
9 - Manufacturer Reserved
10 - J1850 Bus-
11 - Manufacturer Reserved
12 - Manufacturer Reserved
13 - Manufacturer Reserved
14 - CAN Low, J-2284
15 - L Line, ISO 9141-2 & ISO/DIS 14230-4
16 - Battery Power
OBD II Diagnostic Trouble Codes (DTCs)

✓ J2012 and ISO 15031-6 are standards for all DTCs, established by the SAE, International Organization for Standardization (ISO) and other governing bodies.

☐ Codes and definitions assigned by these specifications are known as Generic OBD II codes.

☐ OBD II requires compliance to these standards for all cars, light trucks, APVs, MPVs, and SUVs sold in the United States.

☐ Codes not reserved by the SAE are reserved for the manufacturer and referred to as Manufacturer Specific Codes.

✓ DTCs are used to help determine the cause of a problem or problems with a vehicle.

☐ DTCs consist of a five-digit alphanumeric code.

☐ The DTCs format and general code types are shown below.

Within each category (Powertrain, Chassis, Body and Network) of DTCs there are assigned ranges for different vehicle systems.
Section 3 – Using The Scan Tool

The Scan Tool

1. **LCD Display** – backlit, 128 x 64 pixel display with contrast adjustment.
2. **UP** and **DOWN** arrow keys – moves selection UP or DOWN.
3. **ENTER** key – selects displayed items.
4. **LEFT** and **RIGHT** arrow keys – selects YES or NO, and selects data parameters for custom data list.
5. **BACK** key – goes to the previous screen or level.
6. **ON/OFF** key – turns power ON or OFF.
7. **CodeConnect®** – allows the operator to access vehicle-specific repair information.
8. **DLC Cable** – provides connection for vehicle interface.
9. **USB Port** – provides a USB connection for the computer.
10. **Serial Number Plate** – provides serial number of Scan Tool.
11. **Battery Compartment** – provides power to the Scan Tool when reprogramming from a personal computer or off-vehicle reviewing of codes and printing.

Side of Scan Tool

1. **1**
3. **3**

Back of Scan Tool

8. **8**
10. **10**
11. **11**
Specifications

Display: Backlit, 128 x 64 pixel display with contrast adjust
Operating Temperature: 0 to 50°C (32 to 122°F)
Storage Temperature: -20 to 70°C (-4 to 158°F)
Internal Power: 4-AAA Batteries
External Power: 7 to 16 Volts

✓ A minimum of 8.0 V is required for most control modules to operate properly in a vehicle.

<table>
<thead>
<tr>
<th>Dimensions:</th>
<th>Height</th>
<th>Width</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.36"</td>
<td>3.40"</td>
<td>5.60"</td>
</tr>
<tr>
<td></td>
<td>34.54 mm</td>
<td>86.36 mm</td>
<td>143.76 mm</td>
</tr>
</tbody>
</table>
Using The Scan Tool

Display

The display has a large viewing area for displaying messages, instructions, and diagnostic information.

✓ The back-lit liquid crystal display (LCD) is a 128 x 64 pixel display.

☐ Characters used to help operate the Scan Tool are:

✓ Indicates information is available for an item or multiple items.

† Indicates additional information is available on previous screen by using the ▲ UP arrow key.

↓ Indicates additional information is available on next screen by using the ▼ DOWN arrow key.

Ｌ Indicates internal batteries need replaced or are not installed.

CodeConnect® Key is active.

Indicates graphical viewing available.

Keypad

The keypad is used to move through the different menus of the Scan Tool. The Scan Tool’s software is designed for ease in operating and navigating through menus.

Do not use solvents such as alcohol to clean keypad or display. Use a mild nonabrasive detergent and a soft cotton cloth.

Do not soak keypad as water might find its way inside the Scan Tool.
Using The Scan Tool

Power

Internal Battery
✓ Battery power is not required to use tool.
✓ ON/OFF button on Scan Tool turns tool on and off.
☐ Press and hold ON/OFF key for at least 1 second to turn on Scan Tool.
✓ The Scan Tool will automatically turn OFF after a user-selectable period of inactivity when powered from the internal batteries. The default is 2 minutes.
✓ When powered from the internal batteries, the Scan Tool turns off the backlighting for the display if no key presses are made during a 1-minute period.
✓ If a key is pressed prior to the Scan Tool powering off, the backlighting for the display will turn back on.
✓ The Scan Tool must be attached to the vehicle to perform diagnostic functions. The Scan Tool disables the diagnostic functions when powered from the internal batteries.
✓ Each time the Scan Tool is powered up, voltage of the internal battery is checked.
☐ If voltage is low, the Low Battery Symbol (_LSB) displays on screen.
☐ Replace the battery using instructions provided in Battery Replacement.

CAUTION

If the Scan Tool will not be used for an extended period of time, remove the batteries to prevent battery leakage from damaging the battery compartment.
Using The Scan Tool

Vehicle Power
When the Scan Tool is connected to the vehicle's DLC, the tool is powered by the vehicle and will automatically turn on once connected.

USB Power
When the tool is connected to a Personal Computer (PC) via the USB cable, the tool will automatically power up.

✓ Refer to Scan Tool Does Not Power Up in Section 5 Troubleshooting if there are problems.

System Setup

✓ System Setup allows:

- Measurement units to be changed.
- Display contrast to be changed.
- Auto-Power off time to be changed.
- Print Header to be turned ON or OFF.
- Scan Tool information to be viewed.
- Display to be checked.
- Operation of the keypad to be checked.
- Memory of the tool to be checked.
- Scan Tool to be upgraded.
- Language to be changed.
- Quick Test to be turned ON or OFF.
- Long PID names to be turned ON or OFF.
Using The Scan Tool

From Main Menu:

1. Select System Setup.
 - Use ▲ UP or ▼ DOWN arrow key until System Setup is highlighted.
 - Press ← ENTER.

Changing Measurement Units

✓ English is the default measurement unit.

✓ Measurement units can be changed in View and Record Data.

From System Setup screen:

1. Select English/Metric.
 - Use ▲ UP or ▼ DOWN arrow key until English/Metric is highlighted.
 - Press ← ENTER.

2. Select Desired Measurement Unit.
 - Use ▲ UP or ▼ DOWN arrow key until desired unit is highlighted.

 - Press ← ENTER.
Changing Display Contrast

From System Setup screen:

1. Select Adjust Contrast.
 • Use ▲ UP or ▼ DOWN arrow key until Adjust Contrast is highlighted.
 • Press ← ENTER.

2. Increase or Decrease Display Contrast.
 • Use ▲ UP arrow key to increase Contrast.
 • Use ▼ DOWN arrow key to decrease Contrast.

3. Save Contrast Setting and return to the System Setup menu.
 • Press ← ENTER.

Changing Auto-Power Off

The Auto-Power Off feature allows the tool to turn off automatically after a selected amount of time when tool is not being used. The Auto-Power Off feature will only turn the tool off when it is operating on battery power.
Using The Scan Tool

From System Setup menu:

1. Select Auto-Power Off.
 • Use ▲ UP or ▼ DOWN arrow key until Auto-Power Off is highlighted.
 • Press ← ENTER.

2. Increase or Decrease Auto Power Off Time.
 • Use ▲ UP arrow key to increase Time.
 • Use ▼ DOWN arrow key to decrease Time.

 • Press ← ENTER.
Using The Scan Tool

Quick Test

✓ Quick Test is a feature of the tool that occurs the first time the tool establishes communication with the vehicle after vehicle selection. Quick Test will display the results of I/M Monitors and Read Codes. Quick Test is enabled by default.

From System Setup menu:
1. Select Quick Test.
 • Use UP or DOWN arrow key until Quick Test is highlighted.
 • Press ← ENTER.

2. Select desired Quick Test choice.
 • Use UP or DOWN arrow key until desired choice is highlighted.

3. Save Quick Test setting.
 • Press ← ENTER.

Print Header

✓ Print Header selection allows the user to turn off the Scan Tool printing the currently-selected vehicle prior to the retrieved vehicle data when selecting items from the Print Data menu.

✓ For example, if your currently-selected vehicle is a 2008 Chevrolet Corvette W = 6.2L, this information would print at the top of the page for the data you are printing.
Using The Scan Tool

From **System Setup** menu:

1. **Select Print Header.**
 - Use ▲ UP or ▼ DOWN arrow key until **Print Header** is highlighted.
 - Press ← ENTER.

2. **Select desired Print Header choice.**
 - Use ▲ UP or ▼ DOWN arrow key until desired choice is highlighted.

3. **Save Print Header setting.**
 - Press → ENTER.
Using The Scan Tool

Language Setup

✓ Language Setup selection allows the user to change the language used by the Tool.
✓ English is the default language.

From System Setup menu:

1. Select Language Setup.
 • Use ▲ UP or ▼ DOWN arrow key until Language Setup is highlighted.
 • Press ← ENTER.

2. Select desired Language Setup choice.
 • Use ▲ UP or ▼ DOWN arrow key until desired choice is highlighted.

3. Save Language Setup setting.
 • Press ← ENTER.
Long PID Names

✓ Long PID Names allows the user to enable/disable the tool
scrolling the complete PID name on the bottom line of the display
while viewing Live Data or viewing Freeze Data.

From System Setup menu:

1. Select Long PID Names.
 • Use ▲ UP or ▼ DOWN arrow key until Long PID Names is
 highlighted.
 • Press ← ENTER.

2. Select desired Long PID Names choice.
 • Use ▲ UP or ▼ DOWN arrow key until desired choice is
 highlighted.

3. Save Long PID Names setting.
 • Press ← ENTER.
Using The Scan Tool

View Tool Information

✓ This function allows you to view specific tool information that may be needed when contacting customer service.

From System Setup menu:

1. Select Tool Information.
 - Use ▲ UP or ▼ DOWN arrow key until Tool Information is highlighted.
 - Press ← ENTER.

2. View Information:
 - Serial Number (Serial No:)
 - Software ID (SW ID:)
 - Hardware Version (HW Ver:)
 - Boot Version (Boot Ver:)
 - Product ID (Prod ID:)
 - Board ID (Board ID:)
 - Burn Date (Burn Date:)
 - Burn Location (Burn Loc:)

3. Write Down Scan Tool Information.
 • Space is provided on inside front cover of this manual to record the Scan Tool information.

4. Return to Setup Tool Menu.
 • Use the ← BACK key.
 OR
 • Use the ← ENTER Key.
Using The Scan Tool

Display Test

The **Display Test** is used to check the display.

✓ The test fills every pixel of the display with a solid black character.

From **System Setup** menu:

1. **Select Display Test.**
 - Use **UP** or **DOWN** arrow key until **Display Test** is highlighted.

2. **Start Display Test.**
 - Press **ENTER**.

3. **Look for Missing Spots.**
 - All characters display in solid black if there are no concerns.
 - Screen flips back and forth between screens shown below.

4. **When Done, Press → BACK Key.**
Using The Scan Tool

Keypad Test

The Keypad Test is used to verify keys are working correctly.

From System Setup menu:
1. Select Keypad Test.
 • Use ▲ UP or ▼ DOWN arrow key until Keypad Test is highlighted.
 • Press ENTER.

2. Press a KEY.
 • Key name or scroll direction should inverse colors on display.
 • The only exception is the ← BACK key. When ← BACK key is pressed, System Setup menu returns.

✓ If System Setup menu does not return, then ← BACK key is not working correctly.

Memory Test

✓ The Memory Test will test RAM and Flash ROM.

✓ Run the Memory Test if the tool has trouble:
 □ Playing back recorded data.
 □ Displaying trouble code definitions.
From System Setup menu:
1. Select Memory Test.
 • Use ▲ UP or ▼ DOWN arrow key until Memory Test is highlighted.
 • Press ← ENTER.

✓ Memory Test may take several minutes to complete.
✓ Memory Test results display.
 □ If no problems were detected, then PASSED is displayed
 □ If RAM fails, an error message is shown.
 □ If FLASH fails, a checksum is shown.

2. Return to System Setup menu.
 • Press ← BACK.
Program Mode

The Program Mode is used for updating the Scan Tool. Instructions are provided with upgrades. Refer to “Download Scanning Suite” in Section 2.

✓ If the Program Mode is entered, the BACK (symbol) is not operational. The tool must be powered off to exit Program Mode and then restarted to continue.
Vehicle-Specific Features

Review Data

✓ The Review Data function allows the user to view the information from the previous vehicle tested.

✓ Scan Tool does not require power from the vehicle to use the Review Data function.

1. Select Review Data.
 • Use ▲ UP or ▼ DOWN arrow key until Review Data is highlighted.
 • Press ← ENTER.

2. Follow prompts and instructions provided by Scan Tool and then select item whose data you wish to review.

✓ The Review Data menu shows a checkmark next to the item(s) that has data.

✓ If there is not a checkmark next to the item, then this item can’t be selected until the appropriate function is run from the Diagnostic Menu.

✓ Only one function, Recording, needs detailed instructions.
Using The Scan Tool

Recording

The **Recording** function is used to play back a recording.

- This function is very similar to **View Data**. The only difference is that **View Data** is real time viewing of PIDs, while **Recording** is a viewing of previously recorded PIDs.

From the **Review Data** menu:
1. **Select Recording.**
 - Use ▲ UP or ▼ DOWN arrow key until **Recording** is highlighted.

2. **Select Playback Recording.**

- The **Recording** has frame number and timestamp (in seconds).
 - Negative frames and timestamps indicate data recorded before trigger event.
 - Positive frames and timestamps indicate data recorded after trigger event.
 - Use ▲ UP or ▼ DOWN arrow keys to view recorded PID data of each frame.
 - Use ◄ LEFT or ► RIGHT arrow keys to scroll back and forth through frames.
 - See Appendix A for PID Definitions.
Using The Scan Tool

☐ If graphing is available for selected PID, the “▌” icon is located on the side of the screen.
 – Press ← ENTER to view graph.
 – Press → ENTER again to return to Recording.

✓ The triangle below the graph indicates the position of the frame in the graph.

☐ Use ▼ LEFT or ▶ RIGHT arrow keys to scroll back and forth through graph.

✓ Different vehicles communicate at different speeds and support a different number of PIDs. Therefore, the maximum number of frames that can be recorded varies.

3. Return to Review Data menu.
 • Press ← BACK.

Print Data

The Print Data function allows the printing of diagnostic information stored in the Scan Tool.

✓ The Scan Tool’s internal battery power can be used to print data.
✓ Use the Print Header function to turn On/Off printing vehicle information prior to printing data.
✓ Make sure you have previously downloaded and installed the Scanning Suite PC software from www.actron.com. Refer to “Download Scanning Suite” in Section 2.
✓ Launch Scanning Suite and then start printing application.
✓ Follow all instructions on PC.
Using The Scan Tool

1. Select Print Data.
 - Use ▲ UP or ▼ DOWN arrow key until Print Data is highlighted.
 - Press ← ENTER.

✓ On the Print Data menu, Print All prints all data collected by the Scan Tool.
✓ When printing a Recording, Start Frame and End Frame must be defined.

2. Select Data To Be Printed.
 - Use ▲ UP or ▼ DOWN arrow key.
 - Press ← ENTER.

✓ The Print Data menu shows a check mark next to the items that have data.
✓ If there is no checkmark next to the item, then this item cannot be selected until the appropriate function is run from the Diagnostic Menu.

3. Return to Select Print Data screen.
 - Press ← BACK.
Using The Scan Tool

Code Lookup

Code Lookup is used to look up definitions of DTCs stored in the Scan Tool.

- **✓** If **Code Lookup** is selected from the **Main Menu**, the tool will display Vehicle Selection. Selecting a vehicle in **Code Lookup** from the **Main Menu** does not change the current (previously selected) vehicle. It is only a temporary change to allow you to lookup DTC for a vehicle other than the previous vehicle.

- **✓** When selecting **Code Lookup** from the **Diagnostic Menu**, the tool goes to the **Select Module** screen, if the selected vehicle supports more than one module. Select the desired module to access the **Enter Code** screen, since the vehicle was already selected.

- **✓** The Scan Tool does not require power from the vehicle to perform this function.

From **Main Menu**:

1. **Select Code Lookup**.
 - Use ▲ UP or ▼ DOWN arrow key until **Code Lookup** is highlighted.
 - Press ← ENTER.

2. **Select a specific vehicle** from US, Europe, or Asia. If the vehicle is not in the list for the locations listed, select OBDII/EOBD.
 - To select a specific vehicle, see "Vehicle Selection" section.

3. **Enter code**.
 - All characters must be entered.
 - Only one character can be changed at a time.
 - Use ◀ LEFT or ▶ RIGHT arrow keys to scroll to desired digit.
Using The Scan Tool

- Use ▲ UP or ▼ DOWN arrow keys to change selected digit.
- Press ← ENTER.

✓ Some vehicles may have an additional screen asking in which system to look for a code.

✓ If definition could not be found, the Scan Tool displays No DTC Definition Found. See Service Manual.

✓ To enter another DTC, press ← BACK.

✓ Press ← BACK again to return to the Main Menu or Diagnostic Menu.
Using The Scan Tool

Connecting The Scan Tool

To diagnose a vehicle, connect the DLC cable to the vehicle’s DLC. Refer to “Data Link Connector (DLC)” in Section 2 of Getting Started.

If you just want to power up the tool to do self-tests, code lookup, review or printing data from the last vehicle tested, then you do not need to attach the cable to the DLC. The internal battery provides power for this.

✓ For more information on OBD II connectors, go to http://www.obdclearinghouse.com/oemdb.

Vehicle Selection

AutoID™ uses the VIN to determine the type of vehicle the tool is connected to. Vehicle manufacturers began programming the VIN into the vehicle controller in 2000, but it was not an OBD II mandate until 2005. Vehicles between 2000 and 2004 may or may not support AutoID™, but vehicles after 2005 should support AutoID™. If the tool is on a vehicle newer than database coverage, the tool will AutoID™ as MY OBD II / EOBD, or 2012 OBD II / EOBD.

From Main Menu:

1. Select Vehicle Diagnostics.
 • Use ▲ UP or ▼ DOWN arrow key until Vehicle Diagnostics is highlighted.
 • Press ← ENTER.

2. Use ▲ UP or ▼ DOWN arrow key to select AutoID™ Manual, or Prev:.
 • If the vehicle is a year 2000 or newer, select AutoID™.
 • If the vehicle is 1999 or older, or if the vehicle is 2000 to 2004 but does not support AutoID™, select Manual and go to Step 3.
 • If the previously tested vehicle listed after Prev: is desired, select Prev:. If this is the first time the Tool has been used, the space after Prev: will be blank.
Using The Scan Tool

• Press ENTER.

A Turn Key Off screen will display.

After 10 seconds, turn key On. If the vehicle is supported, the VIN number and essential vehicle data will display. Use the LEFT or RIGHT arrow key to select YES or NO.

• If YES is selected, the Tool may display more selections to further select the vehicle because not every aspect of vehicle identification is contained in the VIN.

• If NO is selected, the Tool proceeds to manual selection.

• Press ENTER.

3. If Manual was selected in Step 2,

• Use UP or DOWN arrow key to highlight:
 - Global OBD II
 - Domestic Vehicles
 - European Vehicles
 - Asian Vehicles
 - Previous Vehicle

• Press ENTER.

✓ The Global OBD II selection is provided for vehicles that are not listed. It is a good idea to always select your specific vehicle when listed to get the most benefit from your tool.

✓ If you have previously selected a vehicle it will appear as a menu selection after Asian vehicles. On the screen shown, the 2003 Corvette is the previous vehicle.

✓ If you select the previous vehicle, the tool will proceed to the Diagnostic menu.

✓ If you wish to select a vehicle other than the previous vehicle, then choose between Global OBD II, Domestic Vehicles, European Vehicles, or Asian Vehicles and continue making selections until the vehicle selection is complete.
Using The Scan Tool

✓ The following screen only displays when power comes from vehicle.

• Turn vehicle key off for 10 seconds.
• Turn vehicle key back to the on position.
• Press ENTER on the Scan Tool.

• If vehicle power is not detected, a screen is shown to verify tool connection.

✓ If you select a vehicle different than your previous vehicle, all retrieved vehicle data currently stored in your tool will be erased.

✓ If you select the previous vehicle, all stored vehicle data will be retained until it is overwritten by the corresponding function selected from the Diagnostic Menu.
Using The Scan Tool

CodeConnect® Feature

CodeConnect® is an experience-based database derived from over 4.7 million phone calls from technicians seeking assistance diagnosing repair problems on their vehicles. CodeConnect® brings the technology of professional technicians to a DIY scan tool. Don’t waste time trying to find the answer. With the information CodeConnect® offers, it takes vehicle repairs to the next level. Since you now know the most probable fix for your problem, you can decide if you want to tackle the repair yourself, or bring the vehicle to a local automotive repair facility.

IMPORTANT In order for CodeConnect® to work, you must select your specific vehicle during vehicle selection. A Global OBD II vehicle selection will not provide any CodeConnect® information. The power of CodeConnect® is that repair information is vehicle and trouble code specific and is based on the largest experience-based database available.

CodeConnect® information is available whenever the CodeConnect® icon is visible on the display. The CodeConnect® icon has the potential of being displayed while trouble codes are being displayed from Read Codes or while Viewing Freeze Frame data. Also, when you print codes to your PC, the CodeConnect® information, if available, will also be printed.

✓ CodeConnect® information is currently only available in English, so if your tool is set to Spanish or French, don’t be alarmed if your DTC text is in one language and your CodeConnect® information is shown in English.
How to use CodeConnect®:

1. When the CodeConnect® icon is shown on the display, press the CodeConnect® key.
 • While viewing trouble codes:
 • Refer to “Read Codes” in Section 4 for more information.

• While in the View Freeze Data Menu:
 • Refer to “View Freeze Data” in Section 4 for more information.

• While viewing freeze data:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C PRESS (psi)</td>
<td>15.5</td>
</tr>
<tr>
<td>A/C PRESS (V)</td>
<td>3.00</td>
</tr>
<tr>
<td>A/F RATIO</td>
<td>14:1</td>
</tr>
<tr>
<td>BARO PRESS ("Hg)</td>
<td>29.9</td>
</tr>
<tr>
<td>MAF (LB/M)</td>
<td>0.57</td>
</tr>
<tr>
<td>ENGINE (RPM)</td>
<td>2352</td>
</tr>
<tr>
<td>CALC LOAD (%)</td>
<td>93.1</td>
</tr>
<tr>
<td>MAF (LB/M)</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Using The Scan Tool

2. Scroll through the code-specific repair information.
 • Use ▲ UP or ▼ DOWN arrow keys to scroll one line at a time.
 • Use ◀ LEFT or ► RIGHT arrow keys to scroll 8 lines at a time, or a whole screen.

There are 3 levels of reported fixes provided in the CodeConnect® database.

<table>
<thead>
<tr>
<th>Fix Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Reported Fix</td>
<td>More likely to be the solution over other choices provided.</td>
</tr>
<tr>
<td>Frequently Reported Fix</td>
<td>As likely as other solutions.</td>
</tr>
<tr>
<td>Also Reported Fix</td>
<td>Less likely than other solutions provided, but worth considering.</td>
</tr>
</tbody>
</table>

3. To return to the screen from where you pressed the CodeConnect® key, press ← BACK.
Acronyms

The **Acronyms** function allows the user to view acronyms and abbreviations used by the Scan Tool.

From Main Menu or Diagnostic Menu:

1. **Select Acronyms.**
 - Use ▲ UP or ▼ DOWN arrow keys until **Acronyms** is highlighted.
 - Press ← ENTER.

2. **Select Alphabetical group range for desired Acronym.**
 - Use ▲ UP or ▼ DOWN arrow key until desired group range is highlighted.
 - Press ← ENTER.

3. **Select Acronym.**
 - Use ▲ UP or ▼ DOWN arrow key until desired acronym is highlighted.
 - Press ← ENTER.
Using The Scan Tool

4. View Selected Acronym.
 • Press ® ENTER to return to Menu where Acronyms was originally selected.

Component Locator

✓ Component Locator provides a vehicle specific location of components found on the selected vehicle. It is a useful companion function to CodeConnect®. CodeConnect® will indicate components that repaired a problem associated with a DTC, and Component Locator provides the location of the component.

✓ Component Locator can be selected from the Main or Diagnostic menus. Since Component Locator provides vehicle specific component locations, a previous vehicle must be stored in the Scan Tool.

From Main Menu or Diagnostic Menu:

1. Select Component Locator.
 • Use ▲ UP or ▼ DOWN arrow keys until Component Locator is highlighted.
 • Press ← ENTER.
Using The Scan Tool

2. Select alphabetical group range for desired component.
 • Use ▲ UP or ▼ DOWN arrow key until desired group range is highlighted.
 • Press ← ENTER.

3. Select Component.
 • Use ▲ UP or ▼ DOWN arrow key until desired acronym is highlighted.
 • Full component name will scroll on bottom of screen for the highlighted component.
 • Press ← ENTER.

4. View selected component location.
 • Press ← ENTER to return to menu where Component Locator was originally selected.
The first time the scan tool links to the vehicle, the communication protocol is automatically detected, and is used until the Scan Tool is turned off or another vehicle is diagnosed.

If an Error Message displays, make sure the OBDII connector is attached, and the ignition key is on. Cycle ignition key to off for 10 seconds, then on. This may be required to reset computer. If required, select yes to try again. If problem still exists, refer to "Error Messages" in Troubleshooting.

The Scan Tool keeps all data received from the last vehicle selected until any of the following occurs:

- A new vehicle is selected.
- Scan Tool is flash programmed to update software.

On initial link to vehicle, Scan Tool checks the status of I/M Monitors no matter which function is selected.
The Diagnostic Menu is broken down into the following selections:

- I/M Monitors
- Read Codes
- Erase Codes
- MIL Status
- State OBD Check
- View Data
- Record Data
- View Freeze Data
- Drive Cycle Monitor
- O2 Monitor Tests
- Diag Monitor Tests
- On-Board Systems
- Vehicle Information
- Modules Present
- Component Locator
- Acronyms
- Review Data
- Print Data
 - I/M Monitors
 - DTCs (Codes)
 - State OBD Check
 - Recording
 - View Freeze Data
 - O2 Monitor Tests
 - Diag Monitor Tests
 - Vehicle Information
 - Modules Present

(List Continued)
Diagnostic Menu

(List Continued)

- Code Lookup
- System Setup
 - English/Metric
 - Adjust Contrast
 - Auto-Power Off
 - Quick Test
 - Print Header
 - Language Setup
 - Long PID Names
 - Tool Information
 - Display Test
 - Keypad Test
 - Memory Test
 - Program Mode
I/M Monitors (Emissions)

The *I/M Monitors* (Inspection / Maintenance) function is used to view a snapshot of the operations for the emission system on OBD II vehicles.

✓ I/M Monitors is a very useful function. To guarantee no faults exist make sure all monitors are *ok* or *n/a* and *no DTC’s* exist.

✓ Refer to the vehicles service manual for the drive cycle operation.

✓ During normal driving conditions, the vehicle computer scans the emission system. After a specific amount of drive time (each monitor has specific driving conditions and time required), the computer monitors decide if the vehicles emission system is working correctly or not as well as detecting out of range values. When the monitor status is:
 • *ok* - vehicle was driven enough to complete the monitor.
 • *inc (Incomplete)* - vehicle was not driven enough to complete the monitor.
 • *n/a (Not Applicable)* - vehicle does not support that monitor.

✓ Depending on vehicle, disconnecting or a discharged battery may erase DTCs and clear monitor status.

✓ Monitors may be cleared by:
 ■ Erasing codes
 ■ Vehicle control modules losing power

✓ *I/M Monitors* can be done key on engine running (KOER) or key on engine off (KOEO).

✓ Extreme weather and/or road conditions can prevent a monitor from running. Also, some monitors may require a cold start to complete.
From the Diagnostic Menu:

1. Select I/M Monitors.
 - Use ▲ UP or ▼ DOWN arrow key until I/M Monitors is highlighted.
 - Press ← ENTER.

Two types of I/M Monitors test are:

- **Since DTCs Cleared** - shows status of the monitors since the DTCs were last erased.
- **This Drive Cycle** - shows status of monitors since the start of the current drive cycle. Refer to the vehicle service manual for more detailed information on emission-related monitors and their status.

Some vehicles do not support This Drive Cycle. If vehicle supports both types of monitors the I/M Monitors Menu displays.

2. View Summary of Monitor Status.
 - Use ▲ UP or ▼ DOWN arrow key (if required).

Depending on Monitor Test one of these two screens will be present.

OR
Abbreviations and names for OBD II Monitors supported by the Scan Tool are shown below. They are required by the United States Environmental Protection Agency (EPA). Not all monitors are supported by all vehicles.

<table>
<thead>
<tr>
<th>Monitors</th>
<th>Expanded Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misfire Monitor</td>
<td>Misfire Monitor</td>
</tr>
<tr>
<td>Fuel System Mon</td>
<td>Fuel System Monitor</td>
</tr>
<tr>
<td>Comp Component</td>
<td>Comprehensive Components Monitor</td>
</tr>
<tr>
<td>Catalyst Mon</td>
<td>Catalyst Monitor</td>
</tr>
<tr>
<td>Htd Catalyst</td>
<td>Heated Catalyst Monitor</td>
</tr>
<tr>
<td>Evap System Mon</td>
<td>Evaporative System Monitor</td>
</tr>
<tr>
<td>Sec Air System</td>
<td>Secondary Air System Monitor</td>
</tr>
<tr>
<td>A/C Refrig Mon</td>
<td>Air Conditioning Refrigerant Monitor</td>
</tr>
<tr>
<td>Oxygen Sens Mon</td>
<td>Oxygen Sensor Monitor</td>
</tr>
<tr>
<td>Oxygen Sens Htr</td>
<td>Oxygen Sensor Heater Monitor</td>
</tr>
<tr>
<td>EGR/VVT Sys Mon</td>
<td>Exhaust Gas Recirculation or variable valve timing monitor</td>
</tr>
<tr>
<td>NMHC Cat Mon</td>
<td>Non-Methane Hydrocarbon Catalyst Monitor</td>
</tr>
<tr>
<td>NOX Treat Mon</td>
<td>Nitrogen Oxide Treatment Monitor</td>
</tr>
<tr>
<td>Boost Pres Mon</td>
<td>Boost Pressure Monitor</td>
</tr>
<tr>
<td>Exhst Gas Sensr</td>
<td>Exhaust Gas Sensor</td>
</tr>
<tr>
<td>PM Filter Mon</td>
<td>Particulate Matter Filter Monitor</td>
</tr>
</tbody>
</table>

3. Return to Diagnostic Menu.
 Press ← BACK.
Read Codes

The Read Codes function allows the Scan Tool to read the DTCs from the vehicle’s control modules. DTCs are used to help determine the cause of a problem or problems with a vehicle. These codes cause the control module to illuminate the malfunction indicator lamp (MIL) when emission-related or driveability fault occurs. MIL is also known as service engine soon or check engine lamp.

Read Codes can be done with the key on engine off (KOEO) or with the key on engine running (KOER).

From Diagnostic Menu:

1. Select Read Codes.
 • Use ▲ UP or ▼ DOWN arrow key until Read Codes is highlighted.
 • Press ENTER.

2. If more than one module is supported, a menu is displayed.
 • Use ▲ UP or ▼ DOWN arrow key until desired choice is highlighted.
 • Press ENTER.
If no DTCs are present a message stating **System Pass: No Faults Detected** is displayed.

If you selected All of the Above from the **Select Module** menu, then all of the codes will be displayed as if you picked all menu items individually.

3. **View and write down the DTCs.**
 - Use the ▲ UP or ▼ DOWN arrow keys.

☐ The screen at the right shows where the Read Codes information is located.

DTC Number - number of the trouble code found in vehicle service information.

X of Y - Indication that you are viewing code x of y, where x is the code being viewed of the total y.

Module - This field is where the name of the module (e.g. ABS) or address of the module (e.g. Mod $28) or both are shown (ABS $28). The table below describes modules supported.
Module Description

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td>Engine or powertrain module.</td>
</tr>
<tr>
<td>TRANS</td>
<td>Transmission module.</td>
</tr>
<tr>
<td>XFER</td>
<td>Transfer case module.</td>
</tr>
<tr>
<td>ABS</td>
<td>Anti-lock Brake System module.</td>
</tr>
<tr>
<td>HYB</td>
<td>Hybrid module.</td>
</tr>
<tr>
<td>MOD $XX</td>
<td>This is the Module Address for the OBDII/EOBD Module reporting the DTC.</td>
</tr>
</tbody>
</table>

DTC Description - This area is reserved for the text describing the trouble code listed in the DTC number field.

DTC Type - This area is reserved for providing additional information about the DTC. Multiple DTC types may be possible for a given DTC number. Not all vehicles support DTC types. The table on the next page describes possible DTC types.
DTC Type Description

<table>
<thead>
<tr>
<th>DTC Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>Intermittent codes placed in the vehicle’s memory when the trouble originally occurred, and will remain there even if the trouble has been corrected. If no trouble after 50 engine warm-up cycles, the DTC will be erased.</td>
</tr>
<tr>
<td>Confirmed</td>
<td>Confirmed codes are reported when a component, sensor, or other part of the vehicle is indication a malfunction is present.</td>
</tr>
<tr>
<td>Current</td>
<td>Codes transmitted through the PCMs data stream when a trouble condition is active and cannot be erased. The problem must be repaired to remove the DTC.</td>
</tr>
<tr>
<td>Intermittent</td>
<td>Indicates the current code has been set at least once but possibly not enough to cause a history code to be stored.</td>
</tr>
<tr>
<td>MIL</td>
<td>Indicates that this DTC has turned on the MIL light.</td>
</tr>
<tr>
<td>Pending</td>
<td>Pending codes are also referred to as continuous monitor or maturing codes. An intermittent fault causes the control module to store a code in memory. If the fault does not occur within a certain number of warm-up cycles (depending on vehicle), the code clears from memory. If fault occurs a specific number of times, the code matures into a DTC and the MIL illuminates or blinks. This function can be used with KOEO or KOER.</td>
</tr>
<tr>
<td>Non-MIL</td>
<td>DTC that is not emission-related and did not turn on the MIL light.</td>
</tr>
<tr>
<td>MIL Code</td>
<td>This DTC type also has a number with it indicating that this is the code number turning on the MIL. Vehicle service manuals may refer to this number instead of the one listed in the DTC number field.</td>
</tr>
<tr>
<td>Permanent</td>
<td>Permanent codes are a special type of confirmed code. Permanent codes began being reported by vehicles around 2010, and therefore not supported by every vehicle. While Confirmed Codes can be erased by the Tool, Permanent Codes cannot. Permanent Codes are erased by the vehicle when the vehicle has determined the fault is no longer present.</td>
</tr>
<tr>
<td>Active</td>
<td>DTC that was present at the time of Scan Tool request.</td>
</tr>
<tr>
<td>Stored</td>
<td>DTC that was not present at the time of Scan Tool request.</td>
</tr>
</tbody>
</table>

Several screen examples are shown on the following page.
In this example, module (MOD) $18 is reporting the DTCs.

In this example, the ABS Module is reporting a Current Code. The $28 is the ABS module address.

Pending indicates a Global OBD II pending code.

✓ icon indicates that the CODE CONNECT key is active. Press the CODE CONNECT key to display repair information. Refer to “Code Connect” in Section 3.

4. Return to Diagnostic Menu.
 • Press ← BACK.
Erase Codes

The **Erase Codes** function deletes DTCs and **I/M Monitor** data from vehicle's control module(s). Perform this function key on engine off (KOEO). **Do not start the engine.**

✓ The **Erase Codes** function may also erase **View Freeze Data**, **O2 Monitor Tests**, and **Diagnostic Monitor Test** results depending on vehicle.

✓ The **Erase Codes** function sets monitors to **inc**.

✓ Perform **Erase Codes** function **only** after systems have been checked completely and DTCs have been written down.

✓ After servicing the vehicle, erase stored DTCs and verify no codes have returned. If a DTC returns, problem has not been fixed or other faults are present.

✓ Depending on which monitor sets a code the vehicle may need to be driven and the monitor ran before concluding that the fault is repaired.

From **Diagnostic Menu**:

1. Select **Erase Codes**.
 - Use **UP** or **DOWN** arrow key until **Erase Codes** is highlighted.
 - Press **ENTER**.

✓ If diagnostic results and codes are not to be erased select **No** and press **ENTER**.
Diagnostic Menu

• Selecting No displays a Command Cancelled message.

2. Select Yes to erase diagnostic results and codes.
 • Use LEFT arrow key.
 • Press ENTER.

3. If more than one module is supported, a menu is displayed.
 • Use UP or DOWN arrow key until desired choice is highlighted.
 • Press ENTER.

4. Observe Command Sent message is displayed.
 • Press ENTER.

5. Return to Diagnostic Menu.
 • Press ENTER.
From Diagnostic Menu:

1. Select MIL Status.
 • Use ▲ UP or ▼ DOWN arrow key until MIL Status is highlighted.
 • Press ← ENTER.

2. View MIL Status.
 • Press ← ENTER to return to Diagnostic Menu.
State OBD Check

The State OBD Check function is used to display a basic status of the vehicle's OBD system.

- Malfunction Indicator Lamp (MIL) Status
- Codes Found
- I/M Monitors

✔ Erase Codes deletes DTCs and clears I/M Monitors from vehicle’s computer module(s).

✔ The State OBD Check function has the following areas:
 - MIL STATUS ON or OFF
 - Number of Codes Found
 - Number of Monitors OK
 - Number of Monitors Inc
 - Number of Monitors N/A

✔ State OBD Check should be done with the key on engine running (KOER) due to showing MIL status.

✔ The number of codes found are Global OBD II Confirmed codes and Permanent codes. Pending codes are not included.

✔ The number of Monitors that are either OK, INC or NA are only Since DTCs Cleared and not This Drive Cycle.

✔ Refer to Read Codes and I/M Monitors for more detailed information about the results.
From the **Diagnostic Menu**:

1. **Select State OBD Check**
 - Use ▲ UP or ▼ DOWN arrow key until *State OBD Check* is highlighted
 - Press ← ENTER.

2. **View State OBD Check Display.**

3. **Return to Diagnostic Menu.**
 - Press ← BACK
View Data

The **View Data** function allows real time viewing of the vehicle’s computer module’s Parameter Identification (PID) data. As the computer monitors the vehicle, information is simultaneously transmitted to scan tool.

- View data allows the following items to be viewed on the scan tool:
 - Sensor data
 - Operation of switches
 - Operation of solenoids
 - Operation of relays

- View data can be shown as:
 - Entire Data List
 - Custom Data List

- Apart from **Read Codes**, **View Data** is the most useful diagnostic function for isolating the cause of a vehicle operation problem.

From **Diagnostic Menu**:

1. **Select View Data.**
 - Use **UP** or **DOWN** arrow key until **View Data** is highlighted.
 - Press **ENTER**.
2. Observe while Scan Tool validates PID MAP.

✓ PID MAP validation is the tool asking the vehicle which PIDs are supported. See Appendix A for a complete list of PIDs supported by the tool.

✓ Multiple PIDs may be sent if vehicle is equipped with more than one computer module (for example a powertrain control module [PCM] and a transmission control module [TCM]). The Scan Tool identifies them by their identification names (ID) assigned by manufacturer (i.e. $10 or $1A).

✓ If one or more control module stops responding, the Scan Tool displays a message.
 ❑ If continuing, dashes will replace data in right hand column.
 ❑ If no is selected, then the Scan Tool attempts to re-establish communication with that module.

View Entire List.

✓ View Entire List shows all supported PID data for the vehicle being tested.

From Select Data to View menu:

1. Select Entire Data List.
 • Use ↑ UP or ↓ DOWN arrow key until Entire Data List is highlighted.
 • Press ← ENTER.
2. **View PIDs on Scan Tool.**
 - Use ▲ UP or ▼ DOWN arrow key.
 - See Appendix A for PID Definitions.

 ✓ If **Long PID Names** is turned ON, the expanded text for the PID will scroll on the bottom line of the display. See “**Long PID Names**” in Section 3.

 If the ✅ icon displays while a PID is selected press ← ENTER to view graph.
 - Use the RIGHT arrow key to select/deselect PIDs. The highlighted PID from when ENTER was pressed is already selected.
 - Use LEFT arrow key to deselect PIDs.
 - Press ENTER to view graph of selected PID.
 - Press the ENTER key to pause the graph. Press ENTER key again to continue graphing.

3. **Return to PID Screen.**
 - Press ← BACK.

4. **Return to Select Data to View Menu.**
 - Press ← BACK.

5. **Return to Diagnostic Menu.**
 - Press ← BACK.
Diagnostic Menu

Custom List Select

✓ The **Custom Data List** allows certain PIDs from the **View Entire Data List**, such as those PIDs that apply to a specific driveability symptom or system, to be selected.

From **Select Data to View** menu:

1. **Select Custom List Select.**
 - Use ▲ UP or ▼ DOWN arrow key until **Custom Data List** is highlighted.
 - Press ← ENTER.

2. **Select View Instructions or Not.**
 - Use ◀ LEFT or ► RIGHT arrow key.
 - Press ← ENTER.

3. **Select PIDs to View.**
 - Use ▲ UP or ▼ DOWN arrow keys to move up and down list
 - The ► RIGHT arrow selects or deselects data parameter. All selected data values are marked with a ✓ symbol.
 - The ◀ LEFT arrow deselects all marked data parameters.
 - The ↓ ENTER key starts recording data, or displaying selected data parameters.

✓ If Long PID Names is turned ON, the expanded text for the PID will scroll on the bottom line of display. See “**Long PID Names**” in Section 3.
Diagnostic Menu

✓ Selected PIDs are kept until you exit View Data and return to the Diagnostic Menu.

4. View PIDs on Scan Tool.
 • Use ▲ UP or ▼ DOWN arrow key.
 • See Appendix A for PID Definitions.

✓ If the icon displays while a PID is selected press ENTER to view graph. Press BACK key to Return to PID Screen.

5. Return to Select Data to View Menu.
 • Press BACK.

6. Return to Diagnostic Menu.
 • Press BACK.

Record Data

✓ The Record Data function records PIDs while vehicle is parked or being driven.

✓ The Record Data function is mainly used for diagnosing intermittent driveability problems that cannot be isolated by any other method.

✓ The recording time varies. A recording consists of frames of data prior to the trigger and several frames after the trigger.

Two people must be in vehicle when driving. One to drive and the other to operate the Scan Tool.
From **Diagnostic Menu**:

1. **Select Record Data.**
 - Use ▲ UP or ▼ DOWN arrow key until **Record Data** is highlighted.
 - Press ← ENTER.

- Follow all instructions on display.
- The ScanTool can maintain only one recording. Make sure to thoroughly review old recording before erasing.

- If a recording currently exists in memory, a message prompting to erase data is displayed.

- Scan Tool validates list of global PIDs from vehicle.

2. **Refer to View Data to setup Custom List or View Entire List.**
Diagnostic Menu

3. Press ← ENTER to start recording.

- Data continues to be saved until either:
 - Record memory is full.
 - Operator presses ← ENTER.

- Scan Tool recording times vary. A recording consists of frames of data prior to trigger and several frames after trigger.

4. After recording, Scan Tool displays a prompt to Playback Data.
 - Answer No to return to Diagnostic Menu.
 - Answer Yes to display recorded data.
 - Refer to “Recording” for instructions on how to Playback Data.
Diagnostic Menu

View Freeze Data

When an emission-related fault occurs, certain vehicle conditions are recorded by the on-board computer. This information is referred to as freeze frame data. **View Freeze Data** is a snapshot of the operating conditions at the time of an emission-related fault.

✓ **View Freeze Data** can be overwritten by faults with a higher priority.

✓ If codes were erased, **View Freeze Data** may not be stored in vehicle memory depending on vehicle.

From the **Diagnostic Menu**:

1. **Select View Freeze Data**.
 - Use ▲ UP or ▼ DOWN arrow key until **View Freeze Data** is highlighted.
 - Press ← ENTER.

2. **Select Frame** (if more than 1 frame is present).
 - Use ▲ UP or ▼ DOWN arrow key.
 - Press ← ENTER.

3. **View PID on Scan Tool**.
 - Use ▲ UP or ▼ DOWN arrow key.
 - See Appendix A for PID Definitions.
Diagnostic Menu

✓ If Long PID Names is turned ON, the expanded text for the PID will scroll on the bottom line of the display. See “Long PID Names” in Section 3.

✓ icon indicates that the CODE CONNECT key is active. Press the CODE CONNECT key to display repair information. Refer to “Code Connect” in Section 3.

4. Select another frame to view (if available).
 • Press ← BACK.

5. Return to Diagnostic Menu.
 • Press ← BACK.
Drive Cycle Monitor

The **Drive Cycle Monitor** function is very similar to the I/M Monitors though the **Drive Cycle Monitor** is used to view REAL TIME operations of the Emissions System on OBD II vehicles.

✓ **Drive Cycle Monitor** continuously updates as the vehicle reports operations of the Emission System.

⚠ **CAUTION**
Two people must be in vehicle when driving. One to drive and the other to operate the Scan Tool.

✓ Refer to the vehicle service manual for the drive cycle operation.

✓ Drive Cycle Monitor can be used if you want to drive the vehicle until all of the monitors are OK.

✓ During normal driving conditions, the vehicle computer scans the emission system. After a specific amount of drive time (each monitor has specific driving conditions and time requirements), the computer monitors will decide if the vehicle emissions system is working correctly or not as well as detecting out a range of values. When the monitor status is:
 - “ok” - vehicle has been driven enough for function.
 - “inc” (Incomplete) - vehicle was not driven enough to complete all of the monitors.
 - “n/a” (Not Applicable) - vehicle does not support that monitor.

✓ **Clear Monitors by:**
 - Erasing Codes.
 - Vehicle Computer Module losing power (on some vehicles).

From the **Diagnostic Menu:**
1. Select **Drive Cycle Monitor**.
 - Use ▲ UP or ▼ DOWN arrow key to highlight **Drive Cycle Monitors**.
 - Press ← ENTER.
Diagnostic Menu

✓ Two types of Drive Cycle Monitors are:

☐ SINCE DTCs CLEARED shows status of the monitors since the Diagnostic Trouble Codes were last erased.

☐ THIS DRIVE CYCLE shows status of monitors since start of current drive cycle. Refer to the vehicle service manual for more detailed information on emission-related monitors and their status.

✓ Some vehicles DO NOT support Drive Cycle Monitors. If vehicle supports both types of Drive Cycle Monitors the Menu will display.

2. View Summary of Monitor Status.
 • Use ▲ UP or ▼ DOWN arrow key (if required).

3. Depending on the Drive Cycle Monitors one of these 2 screens will be present.

✓ The Scan Tool display is continuously updated. Monitors that are “ok” will disappear and only the “inc” monitors will remain displayed. Monitors designated “n/a” are not displayed.
When all Monitors are “OK” the following Screen is shown.

4. Return to Diagnostic Menu.
 - Press ← BACK key.
O2 Monitor Tests

OBD II regulations require applicable vehicles monitor and test oxygen (O2) sensors to determine problems related to fuel and emissions. The **O2 Monitor Tests** allows retrieval of completed O2 sensors monitor test results.

✓ **The O2 Monitor Tests is not an on-demand test.** O2 sensors are not tested when selected via the menu. O2 sensors are tested when engine operating conditions are within specified limits.

✓ If the vehicle communicates using a controller area network (CAN), O2 monitor tests are not supported by vehicle. A message is displayed. See “Diagnostic Monitor Tests” in this section to see O2 monitor data.

✓ O2 sensors are located before (upstream) and after (downstream) catalyst(s). Sensors are named (xy) for their position to both cylinder banks and catalysts.

❑ The O2 sensor for cylinder bank 1 has prefix 1y while O2 sensor for cylinder bank 2 has prefix 2y.

❑ The O2 sensor upstream of catalyst (closest to engine) has suffix x1 while O2 sensor downstream of catalyst has suffix x2. If vehicle contains more catalysts, O2 sensor downstream of second catalyst has suffix x3 and O2 sensor downstream of next catalyst has suffix x4.

❑ For example, **O2S21** is upstream O2 sensor for cylinder bank 2.
The following O2 Sensor Tests are available:

1) Rich-to-lean sensor threshold voltage
2) Lean-to-rich sensor threshold voltage
3) Low sensor voltage for switch time
4) High sensor voltage for switch time
5) Rich-to-lean sensor switch time
6) Lean-to-rich sensor switch time
7) Minimum sensor voltage test cycle
8) Maximum sensor voltage test cycle
9) Time between sensor transitions
10) Sensor period
11) Manufacturer specific tests

From the Diagnostic Menu:

 - Use ▲ UP or ▼ DOWN arrow key until O2 Monitor Tests is highlighted.
 - Press Enter.

2. Select O2 Sensor.
 - Use ▲ UP or ▼ DOWN arrow key until desired O2 Sensor is highlighted.
 - Press Enter.

✓ The O2 sensors located upstream (before catalyst) may perform differently than ones located downstream (after catalyst).

✓ Test IDs are shown for unknown O2 sensor tests.

3. View Results of Selection.
Diagnostic Menu

- Use ▲ UP or ▼ DOWN arrow key.

4. Return to O2 Sensor Tests menu.
 - Press ← BACK.

5. Return to Diagnostic Menu.
 - Press ← BACK.
Diagnostic Menu

Diagnostic Monitor Tests

The **Diagnostic Monitor Test** function is useful after servicing or after erasing a vehicle’s memory. Test results do not necessarily indicate a faulty component or system.

✓ **Non-CAN vehicles** **Diagnostic Monitor Test** receives test results for emission-related powertrain components and systems that are **not continuously monitored**.

✓ **CAN vehicles** **Diagnostic Monitor Test** receives test results for emission-related powertrain components and systems that **are and are not continuously monitored**.

✓ Vehicle manufacturer is responsible for assigning test and component IDs.

From the **Diagnostic Menu**:

1. **Select** **Diag Monitor Tests**.
 • Use ▲ UP or ▼ DOWN arrow key until **Diag Monitor Tests** is highlighted.
 • Press ← ENTER.

✓ Applicable **Diagnostic Monitor Tests** are displayed.
2. Review test results displayed on Scan Tool.
 • Use ▲ UP or ▼ DOWN arrow key until desired test results is highlighted.
 • Press Enter.

OR

✓ Refer to appropriate vehicle service manual for test IDs and definitions.

Diagnosis Menu

Non-CAN Vehicles

Test $01 Test $03 Test $10 Test $21 Test $22 Test $25

Select Diag Mon Test

CAN Vehicles

O2 Sensor B1S1 O2 Sensor B1S2 O2 Sensor B2S1 O2 Sensor B2S2 Catalyst B1 Catalyst B2

Select Diag Mon Test
Diagnostic Menu

✓ On Non-CAN vehicles the Scan Tool displays:
 - Test data (test ID)
 - Maximum value (MAX)
 - Test measurements (MEAS)
 - Minimum value (MIN)
 - Status (STS)
 - Measurements and Specification values are hexadecimal numbers (i.e., $1A, $FE, $11)
 - Module (MOD)

OR

✓ On CAN vehicles Scan Tool displays:
 - Test performed. The test performed can be $### if test is not defined. Refer to vehicle service manual for details.
 - Measured values and units of measured (such as volts, amps, and seconds).
 - Status of monitor test data.
 - Module ID where the monitor test data came from.

3. Return to Select Test Menu.
 • Press ← BACK key.

4. Return to Diagnostic Menu.
 • Press ← BACK key.
On-Board Systems

The **On-Board Systems** test allows the Scan Tool to control operation of vehicle components, tests or systems.

✓ Some manufacturers do not allow tools to control vehicle systems. A vehicle not supporting an on-board system is identified by a message that is displayed when selected.

✓ Refer to the vehicle service manual for on-board systems instructions.

From the **Diagnostic Menu**:

1. **Select On-Board Systems**.
 - Use ▲ UP or ▼ DOWN arrow key until **On-Board Systems** is highlighted.
 - Press ← ENTER.

✓ A list of on-board systems and components available for testing are shown on the display.

2. **Select Test**.
 - Use ▲ UP or ▼ DOWN arrow key.
 - Press ← ENTER.

3. Return to **On-Board Systems** menu.
 - Press ← BACK key.

4. Return to **Diagnostic Menu**.
 - Press ← BACK key.

✓ The manufacturer is responsible for determining the criteria to automatically stop test. Refer to appropriate vehicle service manual.
Vehicle Information

The Vehicle Information function allows the Scan Tool to request the vehicle's VIN number, calibration ID(s) which identifies software version in vehicle control module(s), calibration verification numbers (CVN(s)) and in-use performance tracking.

✓ Vehicle Information function applies to model year 2000 and newer OBD II compliant vehicles.

✓ The Scan Tool cannot verify if data is correct for scanned vehicles.

✓ CVNs are calculated values required by OBD II regulations.

✓ The CVN calculation may take several minutes.

✓ CVNs are reported to determine if emission-related calibrations have been changed. Multiple CVNs may be reported for a control module.

✓ In-use performance tracking, tracks performance of key I/M Monitors.

From the Diagnostic Menu:
1. Select Vehicle Information.
 - Use UP or DOWN arrow key until Vehicle Information is highlighted.
 - Press ENTER.
2. Select information to view from Menu.
 • Use ▲ UP or ▼ DOWN arrow key to highlight desired selection.
 • Press ← ENTER.

3. View Information Supported by Vehicle.
 • Use ▲ UP or ▼ DOWN arrow key (if required).

✓ In the above examples, Module $00 and $04 returned data. Scroll down to view information. CVNs are shown as hexadecimal numbers.
✓ Abbreviations and names for in-use performance tracking data supported by the Tool are shown below. Not all data is supported by all vehicles.
Diagnostic Menu

<table>
<thead>
<tr>
<th>Abbreviated Name</th>
<th>Expanded Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Use Perf Tracking</td>
<td>In-Use Performance Tracking</td>
</tr>
<tr>
<td>OBD Mon Cond</td>
<td>OBD Monitoring Conditions Encountered Counts</td>
</tr>
<tr>
<td>Ignition Cycles</td>
<td>Ignition Counter</td>
</tr>
<tr>
<td>Cat Comp Bank x</td>
<td>Catalyst Monitor Completion Counts Bank x</td>
</tr>
<tr>
<td>Cat Cond Bank x</td>
<td>Catalyst Monitor Conditions Encountered Counts Bank x</td>
</tr>
<tr>
<td>O2 Comp Bank x</td>
<td>O2 Sensor Monitor Completion Counts Bank x</td>
</tr>
<tr>
<td>O2 Cond Bank x</td>
<td>O2 Sensor Conditions Encountered Counts Bank x</td>
</tr>
<tr>
<td>EGR Mon Comp</td>
<td>EGR Monitor Completion Condition Counts</td>
</tr>
<tr>
<td>EGR Mon Cond</td>
<td>EGR Monitor Conditions Encountered Counts</td>
</tr>
<tr>
<td>AIR Mon Comp</td>
<td>AIR Monitor Completion Condition Counts</td>
</tr>
<tr>
<td>AIR Mon Cond</td>
<td>AIR Monitor Conditions Encountered Counts (Secondary Air)</td>
</tr>
<tr>
<td>EVAP Mon Comp</td>
<td>EVAP Monitor Completion Condition Counts</td>
</tr>
<tr>
<td>EVAP Mon Cond</td>
<td>EVAP Monitor Conditions Encountered Counts</td>
</tr>
</tbody>
</table>

- If message INVALID displays on screen, the data returned from the vehicle is incorrect, or is not formatted in accordance with OBD II specifications.

4. **Return to Vehicle Information Menu:**
 - Press BACK key.

5. **Return to Diagnostic Menu:**
 - Press BACK.
Modules Present

The Scan Tool identifies the module IDs and communication type for all Global OBD II modules in the vehicle.

From the Diagnostic Menu:
1. Select Modules Present.
 • Use ▲ UP or ▼ DOWN arrow key until Modules Present is highlighted.
 • Press ENTER.

✓ The types of protocols (communication types) supported by the Scan Tool are:
 ❏ ISO 9141-2 protocol is shown as ISO.

ID Protocols
$10 ISO
$1A ISO
SAE J1850 protocol is shown as VPWM or PWM.

OR

ISO 15765-4 protocol is shown as CAN.

✓ Since CAN vehicles use module IDs larger than 2 digits, the Scan Tool assigns a 2 digit module ID to be used in place of the actual CAN module ID. The module ID assigned for the CAN module ID is used in all functions of the Scan Tool.
ISO 14230-4 protocol is shown as K2K (Keyword 2000).

In the above examples, the * indicates the protocol used to communicate to the vehicle’s control module.
Section 5 – Troubleshooting

Error Messages

Check the following if an error message displays:

- Verify ignition key is in the ON and not in the ACCESSORIES position.
- Make sure the DLC Cable is attached to vehicle’s data link connector (DLC) and Scan Tool.
- Look at DLC and check for cracked or recessed pins, or for any substance that could prevent a good electrical connection.
- Test for continuity between the DLC wiring and the computer. In an extreme case, there may be a broken wire.
- Check for bent or broken pins.
- With the engine off, check for blown fuses in the vehicle fuse box.
- Make sure the vehicle’s control module has a good ground. If the computer case is grounded, then clean the connection and apply a conductive (dielectric) grease to the mating surfaces.
- With the key on engine off (KOEO), verify battery voltage is at least 8.0V
- Verify the control module is not defective. Refer to the service manual to diagnose the control module.

Scan Tool Does Not Power Up

✓ Review Safety Precautions before troubleshooting.

If Scan Tool will not power up, communicate with vehicle control module, pass Scan Tool self-tests, or functions incorrectly in any other way, do the following:

- Check and replace the batteries if needed.
- Clean the DLC pins.
- Disconnect and reconnect DLC making sure it is connected correctly.
- Check vehicle battery to make sure at least 8.0 volts is present.
- Contact customer service.
- With the engine off, check for blown fuses in the vehicle fuse box.
Vehicle Communication Fault

The vehicle’s control module(s) enters into an unrecoverable state.

1. Turn vehicle key to off position.
 • Wait 10 seconds.
 • Press ← ENTER.
Troubleshooting

Operating Error or Erroneous Data

An Operating Error or Erroneous Data occurs if vehicle’s computer(s) stop(s) communicating with Scan Tool.

1. Make Selection
 • Use LEFT or RIGHT arrow key.
 • Press ENTER.

✓ See “Error Messages” on page 5-1 for possible causes.

Battery Replacement

The Scan Tool requires 4-AAA alkaline batteries to operate without vehicle power.

✓ When the batteries need to be replaced, the low-battery icon (💡) is displayed.

✓ Rechargeable batteries do not last as long as alkaline types and are not recommended.

✓ Non-rechargeable Lithium (Li) battery can be used. Though Lithium types last longer than the alkaline types, they are more expensive.
Troubleshooting

1. Place Display Face Down.
 • On non-abrasive surface.

2. Remove Battery Cover.
 • Turning phillips screw counterclockwise.
 • Slide battery cover off.

4. Install New Batteries.
 • 4-AAA Alkaline Batteries.

5. Reinstall Battery Cover.
 • Slide battery cover on.
 • Install phillips screw turning it clockwise.
 • Do not overtighten screw.
Troubleshooting

Tool Self-Tests

Tool Self-Tests check the display, keys, and internal memory.

✓ Refer to *Using The Scan Tool* section of the manual for the operation procedures for Scan Tool self-tests.

Technical Support

• Toll-Free Number: 1-800-228-7667.
Appendix A – PID Definitions

NOTE: Although there are in excess of 300 PIDs, the Tool only displays the PIDs the vehicle supports.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS FRP</td>
<td>Absolute Fuel Rail Pressure</td>
</tr>
<tr>
<td>ABS LOAD</td>
<td>Absolute Load Value</td>
</tr>
<tr>
<td>ABS TPS B, C</td>
<td>Throttle Position B, C</td>
</tr>
<tr>
<td>ABSLT TPS</td>
<td>Absolute Throttle Position</td>
</tr>
<tr>
<td>ACC POS D</td>
<td>Accelerator Pedal D, E, F</td>
</tr>
<tr>
<td>ACC POS REL</td>
<td>Relative Accelerator Pedal Position</td>
</tr>
<tr>
<td>AECD1_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #1 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD10_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #10 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD11_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #11 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD12_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #12 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD13_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #13 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD14_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #14 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD15_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #15 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD16_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #16 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD17_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #17 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD18_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #18 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD19_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #19 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>PID Definitions</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AECD2_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #2 Timer 1 Active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD20_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #20 Timer 1 active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD3_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #3 Timer 1 Active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD4_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #4 Timer 1 Active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD5_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #5 Timer 1 Active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD6_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #6 Timer 1 Active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD7_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #7 Timer 1 Active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD8_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #8 Timer 1 Active, #2 Timer Active</td>
</tr>
<tr>
<td>AECD9_TIME1, TIME 2</td>
<td>Total Run Time with EI-AECD #9 Timer 1 Active, #2 Timer Active</td>
</tr>
<tr>
<td>ALCOHOL</td>
<td>Alcohol Fuel Percent</td>
</tr>
<tr>
<td>BARO PRS</td>
<td>Barometric Pressure</td>
</tr>
<tr>
<td>BAT_PWR</td>
<td>Hybrid Battery Pack Remaining Life</td>
</tr>
<tr>
<td>BP_A_ACT, B_ACT</td>
<td>Boost Pressure Sensor A, Sensor B</td>
</tr>
<tr>
<td>BP_A_CMD, B_CMD</td>
<td>Commanded Boost Pressure A, Pressure B</td>
</tr>
<tr>
<td>BP_A_STAT, B_STAT</td>
<td>Boost Pressure A Control Status, B Control Status</td>
</tr>
<tr>
<td>CACT 11, 12</td>
<td>Charge Air Cooler Temperature Bank 1 Sensor 1 supported, Sensor 2 supported</td>
</tr>
<tr>
<td>CACT 21,22</td>
<td>Charge Air Cooler Temperature Bank 2 Sensor 1 supported, Sensor 2 supported</td>
</tr>
<tr>
<td>CALC LOAD</td>
<td>Calculated Engine Load</td>
</tr>
<tr>
<td>CAT TEMP11, TEMP12</td>
<td>Catalytic Converter Temp Bank1, Temp Bank 3</td>
</tr>
<tr>
<td>CAT TEMP21, TEMP22</td>
<td>Catalytic Converter Temp Bank2, Temp Bank 4</td>
</tr>
<tr>
<td>CLR DIST</td>
<td>Distance since erase</td>
</tr>
<tr>
<td>CLR TIME</td>
<td>Minutes Run since Erase</td>
</tr>
<tr>
<td>CLR TRPS</td>
<td>Warmups Since Erase</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>CMD EQ RAT</td>
<td>Commanded Equivalence Ratio</td>
</tr>
<tr>
<td>COOLANT</td>
<td>Engine Coolant Temp</td>
</tr>
<tr>
<td>DPF_REG_AVGD</td>
<td>Average Distance Between DPF Regen</td>
</tr>
<tr>
<td>DPF_REG_AVGT</td>
<td>Average Time Between DPF Regen</td>
</tr>
<tr>
<td>DPF_REG_STAT</td>
<td>Diesel Particulate Filter (DPF) Regen Status</td>
</tr>
<tr>
<td>DPF_REG_TYP</td>
<td>Diesel Particulate Filter (DPF) Regen Type</td>
</tr>
<tr>
<td>DPF_REGEN_PCT</td>
<td>Normalized Trigger for DPF Regen</td>
</tr>
<tr>
<td>DPF1_DP, DPF2_DP</td>
<td>Diesel Particulate Filter (DPF) Bank 1 Delta Pressure, Bank 2 Delta Pressure</td>
</tr>
<tr>
<td>DPF1_INP, DPF2_INP</td>
<td>Diesel Particulate Filter (DPF) Bank 1 Inlet Pressure, Bank 2 Inlet Pressure</td>
</tr>
<tr>
<td>DPF1_INT, DPF2_INT</td>
<td>DPF Bank 1 Inlet Temperature Sensor, Bank 2 Inlet Temperature Sensor</td>
</tr>
<tr>
<td>DPF1_OUTP, DPF2_OUTP</td>
<td>Diesel Particulate Filter (DPF) Bank 1 Outlet Pressure, Bank 2 Outlet Pressure</td>
</tr>
<tr>
<td>DPF1_OUTT, DPF2_OUTT</td>
<td>DPF Bank 1 Outlet Temperature Sensor, Bank 2 Outlet Temperature Sensor</td>
</tr>
<tr>
<td>ECT 1, 2</td>
<td>Engine Coolant Temperature 1, Temperature 2</td>
</tr>
<tr>
<td>EGR CMD</td>
<td>Commanded EGR</td>
</tr>
<tr>
<td>EGR ERR</td>
<td>Exhaust Gas Recirculation Error</td>
</tr>
<tr>
<td>EGR_A_ACT, B_ACT</td>
<td>Actual EGR A Duty Cycle/Position, B Duty Cycle/Position</td>
</tr>
<tr>
<td>EGR_A_CMD, B_CMD</td>
<td>Commanded EGR A Duty Cycle/Position, B Duty Cycle/Position</td>
</tr>
<tr>
<td>EGR_A_ERR, B_ERR</td>
<td>EGR A Error, B Error</td>
</tr>
<tr>
<td>EGRT 11, 21</td>
<td>Exhaust Gas Recirculation Temperature Bank 1 Sensor 1, Bank 2 Sensor 1</td>
</tr>
<tr>
<td>EGRT 12, 22</td>
<td>Exhaust Gas Recirculation Temperature Bank 1 Sensor 2, Bank 2 Sensor 2</td>
</tr>
<tr>
<td>EGT 11, 21</td>
<td>Exhaust Gas Temperature (EGT) Bank 1 Sensor 1, Bank 2 Sensor 1</td>
</tr>
<tr>
<td>EGT 12, 22</td>
<td>Exhaust Gas Temperature (EGT) Bank 1 Sensor 2, Bank 2 Sensor 2</td>
</tr>
<tr>
<td>EGT 13, 23</td>
<td>Exhaust Gas Temperature (EGT) Bank 1 Sensor 3, Bank 2 Sensor 3</td>
</tr>
<tr>
<td>PID Definitions</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>EGT 14, 24</td>
<td>Exhaust Gas Temperature (EGT) Bank 1 Sensor 4, Bank 2 Sensor 4</td>
</tr>
<tr>
<td>EMIS_SUP</td>
<td>Emission requirements to which vehicle is designed</td>
</tr>
<tr>
<td>ENG RUN</td>
<td>Time Since Engine Start</td>
</tr>
<tr>
<td>ENG SPEED</td>
<td>Engine RPM</td>
</tr>
<tr>
<td>EOT</td>
<td>Engine Oil Temperature</td>
</tr>
<tr>
<td>EP_1, 2</td>
<td>Exhaust Pressure Sensor Bank 1, Bank 2</td>
</tr>
<tr>
<td>EQ RATIO</td>
<td>Equivalence Ratio</td>
</tr>
<tr>
<td>EVAP PURGE</td>
<td>Commanded EVAP Purge</td>
</tr>
<tr>
<td>EVAP VP</td>
<td>EVAP Vapor Pressure</td>
</tr>
<tr>
<td>EVAP VPA</td>
<td>Absolute EVAP Vapor Pressure</td>
</tr>
<tr>
<td>FRP_A, B</td>
<td>Fuel Rail Pressure A, B</td>
</tr>
<tr>
<td>FRP_A_CMD, B_CMD</td>
<td>Commanded Fuel Rail Pressure A, B</td>
</tr>
<tr>
<td>FRT_A, B</td>
<td>Fuel Rail Temperature A, B</td>
</tr>
<tr>
<td>FUEL LEVEL</td>
<td>Fuel Level Input</td>
</tr>
<tr>
<td>FUEL PRES</td>
<td>Fuel Rail Pressure</td>
</tr>
<tr>
<td>FUEL SYS 1, 2</td>
<td>Fuel System 1 Loop Status, System 2 Loop Status</td>
</tr>
<tr>
<td>FUEL TYPE</td>
<td>Fuel Type</td>
</tr>
<tr>
<td>FUEL_RATE</td>
<td>Engine Fuel Rate</td>
</tr>
<tr>
<td>FUEL_TIMING</td>
<td>Fueling Injection Timing</td>
</tr>
<tr>
<td>GPL_STAT</td>
<td>Glow Plug Lamp Status</td>
</tr>
<tr>
<td>IAF_A_CMD, B_CMD</td>
<td>Commanded Intake Air Flow A Control, B Control</td>
</tr>
<tr>
<td>IAF_A_REL, B_REL</td>
<td>Relative Intake Air Flow A Position, B Position</td>
</tr>
<tr>
<td>IAT</td>
<td>Intake Air Temp</td>
</tr>
<tr>
<td>IAT 11, 21</td>
<td>Intake Air Temperature Sensor Bank 1 Sensor 1, Bank 2 Sensor 1</td>
</tr>
<tr>
<td>IAT 12, 22</td>
<td>Intake Air Temperature Sensor Bank 1 Sensor 2, Bank 2 Sensor 2</td>
</tr>
<tr>
<td>IAT 13, 23</td>
<td>Intake Air Temperature Sensor Bank 1 Sensor 3, Bank 2 Sensor 3</td>
</tr>
<tr>
<td>ICP_A, B</td>
<td>Injection Control Pressure A, B</td>
</tr>
<tr>
<td>PID Definition</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ICP_A_CMD, B_CMD</td>
<td>Commanded Injection Control Pressure A, B</td>
</tr>
<tr>
<td>IDLE_TIME</td>
<td>Total Idle Run Time</td>
</tr>
<tr>
<td>IGN ADV</td>
<td>Timing Advance</td>
</tr>
<tr>
<td>LAMBDA11, 21</td>
<td>02 Sensor Lambda Bank 1 Sensor 1, Bank 2 Sensor 1</td>
</tr>
<tr>
<td>LAMBDA12, 22</td>
<td>02 Sensor Lambda Bank 1 Sensor 2, Bank 2 Sensor 2</td>
</tr>
<tr>
<td>LT FTRM1</td>
<td>Long Term Fuel Trim 1 or 3</td>
</tr>
<tr>
<td>LT FTRM2</td>
<td>Long Term Fuel Trim 2 or 4</td>
</tr>
<tr>
<td>LT SEC FT1, 2, 3, 4</td>
<td>Long Term Secondary O2 Sensor Fuel Trim 1, 2, 3, 4</td>
</tr>
<tr>
<td>MAF, A, B</td>
<td>Mass Air Flow, A, B</td>
</tr>
<tr>
<td>MAP, A, B</td>
<td>Manifold Absolute Pressure, A, B</td>
</tr>
<tr>
<td>MIL DIST</td>
<td>MIL_DIST</td>
</tr>
<tr>
<td>MIL STATUS</td>
<td>Malfunction Indicator Lamp</td>
</tr>
<tr>
<td>MIL TIME</td>
<td>Minutes Run by MIL activated</td>
</tr>
<tr>
<td>MST</td>
<td>Manifold Surface Temperature</td>
</tr>
<tr>
<td>N/D_STAT</td>
<td>Auto Trans Neutral Drive Status</td>
</tr>
<tr>
<td>N/G_STAT</td>
<td>Manual Trans Neutral Gear Status</td>
</tr>
<tr>
<td>NNTE_stat</td>
<td>NOx NTE control area status</td>
</tr>
<tr>
<td>NOX 11, 21</td>
<td>NOx Sensor Concentration Bank 1 Sensor 1, Bank 2 Sensor 1</td>
</tr>
<tr>
<td>NOX 12, 22</td>
<td>NOx Sensor Concentration Bank 1 Sensor 2, Bank 2 Sensor 2</td>
</tr>
<tr>
<td>NOX LEVEL HI, HI1, HI2, HI3, HI4</td>
<td>SCR inducement system actual state 10K history HI1 (0 - 10000 km), 10K history HI2 (10000 - 20000 km), 10K history HI3 (20000 - 30000 km), 10K history HI4 (30000 - 40000 km): NOx emission too high</td>
</tr>
<tr>
<td>NOX_ADS_DESUL</td>
<td>NOx Adsorber Desulfurization Status</td>
</tr>
<tr>
<td>NOX_ADS_REGEN</td>
<td>NOx Adsorber Regen Status</td>
</tr>
<tr>
<td>NWI_TIME</td>
<td>Total Run Time by the Engien which NOx warning mode is activated</td>
</tr>
<tr>
<td>O2S</td>
<td>O2 Voltage or Current indicates Bank/Sensor</td>
</tr>
<tr>
<td>O2S11_PCT, O2S21_PCT</td>
<td>02 Sensor Concentration Bank 1 Sensor 1, Bank 2 Sensor 1</td>
</tr>
</tbody>
</table>
PID Definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2S12_PCT, O2S22_PCT</td>
<td>02 Sensor Concentration Bank 1 Sensor 2, Bank 2 Sensor 2</td>
</tr>
<tr>
<td>OBD2 STAT</td>
<td>OBD Status</td>
</tr>
<tr>
<td>OUT TEMP</td>
<td>Ambient Air Temp</td>
</tr>
<tr>
<td>PM 11, PM 21</td>
<td>PM Sensor Mass Concentration Bank 1 Sensor 1, Bank 2 Sensor 1</td>
</tr>
<tr>
<td>PNTE_Stat</td>
<td>PM NTE control area status</td>
</tr>
<tr>
<td>PTO STATUS</td>
<td>PTO Status</td>
</tr>
<tr>
<td>PTO_STAT</td>
<td>Power Take Off (PTO) Status</td>
</tr>
<tr>
<td>PTO_TIME</td>
<td>Total Run Time With PTO Active</td>
</tr>
<tr>
<td>REAG_DEMD</td>
<td>Average Demanded Reagent Consumption</td>
</tr>
<tr>
<td>REAG_LVL</td>
<td>Reagent Tank Level</td>
</tr>
<tr>
<td>REAG_RATE</td>
<td>Average Reagent Consumption</td>
</tr>
<tr>
<td>REL FRP</td>
<td>Relative Fuel Rail Pressure</td>
</tr>
<tr>
<td>REL TPS</td>
<td>Relative Throttle Position</td>
</tr>
<tr>
<td>RUN_TIME</td>
<td>Total Engine Run Time</td>
</tr>
<tr>
<td>SCR REAG DEV, DEV1, DEV2, DEV3, DEV4</td>
<td>SCR inducement system actual state 10K history DEV1 (0 - 10000 km), 10K history DEV2 (10000 - 20000 km), 10K history DEV3 (20000 - 30000 km), 10K history DEV4 (30000 - 40000 km): deviation of reagent consumption</td>
</tr>
<tr>
<td>SCR REAG LOW, LOW1, LOW2, LOW3, LOW4</td>
<td>SCR inducement system actual state 10K history LOW1 (0 - 10000 km), 10K history LOW2 (10000 - 20000 km), 10K history LOW3 (20000 - 30000 km), 10K history LOW4 (30000 - 40000 km): reagent level too low</td>
</tr>
<tr>
<td>SCR REAG WRONG, WRONG1, WRONG2, WRONG3, WRONG4</td>
<td>SCR inducement system actual state 10K history WRONG1 (0 - 10000 km), 10K history WRONG2 (10000 - 20000 km), 10K history WRONG3 (20000 - 30000 km), 10K history WRONG4 (30000 - 40000 km): incorrect reagent</td>
</tr>
<tr>
<td>SCR SYS ACTIVE</td>
<td>SCR inducement system actual state: inducement system active</td>
</tr>
<tr>
<td>SCR_DIST_1D</td>
<td>Distance travelled in current 10K block (0 - 10000 km)</td>
</tr>
<tr>
<td>SCR_DIST_1N, 2N, 3N, 4N</td>
<td>Distance travelled while inducement system active in current 10K block 1N (0 - 10000 km), 20K block 2N (10 - 20000 km), 30K block 3N (20 - 30000 km), 40K block 4N (30 - 40000 km)</td>
</tr>
<tr>
<td>PID Code</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>SECOND AIR</td>
<td>Secondary Air Status</td>
</tr>
<tr>
<td>ST FTRM</td>
<td>Fuel Trim Bank/Sensor</td>
</tr>
<tr>
<td>ST FTRM1, 3</td>
<td>Short Term Fuel Trim1 or 3</td>
</tr>
<tr>
<td>ST FTRM2, 4</td>
<td>Short Term Fuel Trim2 or 4</td>
</tr>
<tr>
<td>ST SEC FT1, 2, 3, 4</td>
<td>Short Term Secondary O2 Sensor Fuel Trim 1, 2, 3, 4</td>
</tr>
<tr>
<td>TAC_A_CMD, B_CMD</td>
<td>Commanded Throttle Actuator A Control, B Control</td>
</tr>
<tr>
<td>TAC_A_REL, B_REL</td>
<td>Relative Throttle A Position, B Position</td>
</tr>
<tr>
<td>TCA_CINP, TCB_CINP</td>
<td>Turbocharger Compressor Inlet Pressure Sensor A, Pressure Sensor B</td>
</tr>
<tr>
<td>TCA_CINT, TCB_CINT</td>
<td>Turbocharger A Compressor Inlet Temperature, Turbocharger B</td>
</tr>
<tr>
<td>TCA_COUT, TCB_COUT</td>
<td>Turbocharger A Compressor Outlet Temperature, Turbocharger B</td>
</tr>
<tr>
<td>TCA_RPM, TCB_RPM</td>
<td>Turbocharger A RPM, B RPM</td>
</tr>
<tr>
<td>TCA_TCOUT, TCB_TCOUT</td>
<td>Turbocharger A Turbine Outlet Temperature, Turbocharger B</td>
</tr>
<tr>
<td>TCA_TINT, TCB_TINT</td>
<td>Turbocharger A Turbine Inlet Temperature, Turbocharger B</td>
</tr>
<tr>
<td>THROT CMD</td>
<td>Commanded Throttle Actuator Control</td>
</tr>
<tr>
<td>TP G</td>
<td>Absolute Throttle Position G</td>
</tr>
<tr>
<td>TQ_ACT</td>
<td>Actual Engine - Percent Torque</td>
</tr>
<tr>
<td>TQ_DD</td>
<td>Driver's Demand Engine - Percent Torque</td>
</tr>
<tr>
<td>TQ_MAX1, 2, 3, 4, 5</td>
<td>Engine Percent Torque At Point 1 (Idle), Point 2, 3, 4, 5</td>
</tr>
<tr>
<td>TQ_REF</td>
<td>Engine Reference Torque</td>
</tr>
<tr>
<td>TROUB CODE</td>
<td>Code causing the Freeze Frame</td>
</tr>
<tr>
<td>VEH SPEED</td>
<td>Vehicle Speed</td>
</tr>
<tr>
<td>VGT_A_ACT, B_ACT</td>
<td>Variable Geometry Turbo A Position, Turbo B</td>
</tr>
<tr>
<td>VGT_A_CMD, B_CMD</td>
<td>Commanded Variable Geometry Turbo A Position, Turbo B</td>
</tr>
<tr>
<td>VGT_A_STAT, B_STAT</td>
<td>Variable Geometry Turbo A Control Status, Turbo B</td>
</tr>
<tr>
<td>VPWR</td>
<td>Control Module Voltage</td>
</tr>
</tbody>
</table>
PID Definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG_A_ACT, B_ACT</td>
<td>Wastegate A Position, B Position</td>
</tr>
<tr>
<td>WG_A_CMD, B_CMD</td>
<td>Commanded Wastegate A Control, B Control</td>
</tr>
</tbody>
</table>
Appendix B – Glossary

A/C:
Air Conditioner

A/D:
Analog to Digital

A/F:
Air/Fuel ratio. The proportion of air and fuel delivered to the cylinder for combustion. For example, an A/F ratio of 14:1 denotes 14 times as much air as fuel in the mixture. Ideally the A/F ratio is 14.7:1.

ABS:
Anti-lock Brake System

A/C Clutch Relay:
The PCM uses this relay to energize the A/C clutch, turning the A/C compressor on or off.

A/C Pressure Sensor:
Measures air conditioning refrigerant pressure and sends a voltage signal to the PCM.

A/C Pressure Switch:
A mechanical switch connected to the A/C refrigerant line. The switch is activated (sending a signal to the PCM) when the A/C refrigerant pressure becomes too low or high.

Actuator:
Actuators such as relays, solenoids, and motors allow the PCM to control the operation of vehicle systems.

Air Injection Reaction (AIR) System:
An emission control system operated by the PCM. During cold starts, an air pump injects outside air into the exhaust manifold to help burn hot exhaust gases. This reduces pollution and speeds warm-up of oxygen sensors and catalytic converters. After the engine is warm, the air will either be dumped back to the atmosphere (or into the air cleaner assembly) or sent to the catalytic converter.

APP:
Acceleration Pedal Position (Sensor)

ASR:
Acceleration Slip Regulation

Bank x:
The standard way of referring to the bank of cylinders containing cylinder #x. In-line engines have only one bank of cylinders. Most commonly used to identify the location of oxygen sensors. See O2S, Sensor x, Sensor x.

BARO:
Barometric Pressure Sensor. See MAP Sensor.
Glossary

BBV:
Brake Boost Vacuum (Sensor)

BCM:
Body Control Module

Boost Control Solenoid:
A solenoid that is energized by the PCM, in order to control turbo/supercharger boost pressure.

Brake Switch Signal:
An input signal to the PCM indicating that the brake pedal is being pressed. This signal is typically used to disengage Cruise Control systems and Torque Converter Clutch (TCC) solenoids. See also TCC.

CAM:
Camshaft Position Sensor. Sends a frequency signal to the PCM in order to synchro nize fuel injector and spark plug firing.

Catalytic Converter:
Designed to reduce exhaust emissions.

CAN:
Controller Area Network

CARB:
California Air Resources Board. Governing body for emissions control in California.

CKP REF:
Crankshaft Position Reference.

CKP:
Crankshaft Position. See CPS.

CKT:
Circuit

Closed Loop (CL):
A feedback system that uses the O2 Sensor(s) to monitor the results of combustion. Based on the signal(s) from the O2 sensor(s), the PCM modifies the air/fuel mixture to maintain optimum performance with lowest emissions. In closed loop mode, the PCM can fine tune control of a system to achieve an exact result.

CMP:
Camshaft Position Sensor

CO:
Carbon Monoxide; odorless gas produced by incomplete combustion.

Code Scanner:
A device that interfaces with and communicates information via a data link.

Continuous Memory Codes:
See Pending Codes.

CPS:
Crankshaft Position Sensor. Sends a frequency signal to the PCM. It is used to reference fuel injector operation and synchronize spark plug firing on distributorless ignition systems (DIS).
Glossary

CTS:
Coolant Temperature Sensor. A resistance sensor that sends a voltage signal to the PCM indicating the temperature of the coolant. This signal tells the PCM whether the engine is cold or warm.

CVRTD:
Continuous Variable Real Time Damping

D/R:
Drive/Reverse

Data Link Connector (DLC):
Connector providing access and/or control of the vehicle information, operating conditions, and diagnostic information. Vehicles with OBD II use a 16-pin connector located in the passenger compartment.

Data Stream:
The actual data communications sent from the vehicle’s PCM to the data connector.

DEPS:
Digital Engine Position Sensor.

Detonation:
See Knock.

DI/DIS:
Direct Ignition/Distributorless Ignition System. A system that produces the ignition spark without the use of a distributor.

DPFE:
Differential Pressure Feedback – Exhaust Gas Recirculation Sensor

DTC:
Diagnostic Trouble Code. An alphanumeric identifier for a fault condition identified by the On Board Diagnostic System.

Duty Cycle:
A term applied to signals that switch between on and off. Duty cycle is the percentage of time the signal is on. For example, if the signal is on only one fourth of the time, then the duty cycle is 25%. The PCM uses duty cycle type signals to maintain precise control of an actuator.

EBCM:
Electronic Brake Control Module

EBTCM:
Electronic Brake/Traction Control Module

ECM
Engine Control Module or Electronic Control Module

ECT:
Engine Coolant Temperature sensor. See CTS.

EEPROM:
Electrically Erasable Programmable Read Only Memory

EFE:
Early Fuel Evaporation
Glossary

EFI:
Electronic Fuel Injection. Any system where a computer controls fuel delivery to the engine by using fuel injectors.

EGR:
Exhaust Gas Recirculation. The PCM uses the EGR system to recirculate exhaust gases back into the intake manifold to reduce emissions. EGR is used only during warm engine cruise conditions.

EOP:
Engine Oil Pressure (Switch)

EOT
Engine Oil Temperature (Sensor)

EPA:
Environmental Protection Agency.

ESC:
Electronic Spark Control. An ignition system function that warns the PCM when knock is detected. The PCM then retards spark timing to eliminate the knocking condition.

EST:
Electronic Spark Timing. An ignition system that allows the PCM to control spark advance timing. The PCM determines optimum spark timing from sensor information — engine speed, throttle position, coolant temperature, engine load, vehicle speed, Park/Neutral switch position, and knock sensor condition.

EVAP:
Evaporative Emissions System.

FC:
Fan Control

Freeze Frame:
A block of memory containing DTCs of the vehicle operating conditions for a specific time.

FTP:
Federal Test Procedure. Strict test of vehicle’s emissions.

Ground (GND):
An electrical conductor used as a common return for an electric circuit(s) and with a relative zero potential (voltage).

Hall Effect Sensor:
Any of a type of sensor utilizing a permanent magnet and a transistorized Hall Effect switch. Hall Effect type sensors may be used to measure speed and position of the crankshaft or camshaft — for spark timing and fuel injector control.

HO2S:
Heated Oxygen Sensor. See **O2S**.

HVAC:
Heating, Ventilation & Air Conditioning (System)

I/M:
Inspection and Maintenance. An emission control program.
Glossary

IAC: Idle Air Control. A device mounted on the throttle body which adjusts the amount of air bypassing a closed throttle so that the PCM can control idle speed.

IAT: Intake Air Temperature (Sensor)

ICM: Ignition Control Module.

IMRC: Intake Manifold Runner Control

IPC: Instrument Panel Cluster

ISC: Idle Speed Control. A small electric motor mounted on the throttle body and controlled by the PCM. The PCM can control idle speed by commanding the ISC to adjust its position.

ISO: International Organization of Standardization also know as International Standards Organization.

KAM: Keep Alive Memory

Knock Sensor (KS): Used to detect engine detonation or knock. The sensor contains a piezoelectric element and is threaded into the engine block. Special construction makes the element sensitive only to engine vibrations associated with detonation.

Knock: Uncontrolled ignition of the air/fuel mixture in the cylinder. Also referred to as detonation or ping. Knock indicates extreme cylinder pressures or “hotspots” which are causing the air/fuel mixture to detonate prematurely.

KOEO: Key On Engine Off. Turn the ignition key to on, but don’t start the engine.

KOER: Key On Engine Running. Start the vehicle.

LCD: Liquid Crystal Display

LTFT: Long Term Fuel Trim

M/T: Manual transmission or manual transaxle.

MAF: Mass Air Flow (sensor). Measures the amount and density of air entering the engine and sends a frequency or voltage signal to the PCM. The PCM uses this signal in its fuel delivery calculations.
Glossary

MAP:
Manifold Absolute Pressure (sensor). Measures intake manifold vacuum or pressure and sends a frequency or voltage signal (depending on sensor type) to the PCM. This gives the PCM information on engine load for control of fuel delivery, spark advance, and EGR flow.

MAT:
Manifold Air Temperature (sensor). A resistance sensor in the intake manifold that sends a voltage signal to the PCM indicating the temperature of the incoming air. The PCM uses this signal for fuel delivery calculations.

MIL:
Malfunction Indicator Lamp. The MIL is most commonly known as the Check Engine or Service Engine Soon light. A required on-board indicator to alert the driver of an emission-related malfunction.

Misfire:
Caused by the air fuel ratio being incorrect.

Monitor:
A test performed by the on-board computer to verify proper operation of emission-related systems or components.

MPFI or MFI:
Multi-Port Fuel Injection. MPFI is a fuel injection system using one (or more) injector(s) for each cylinder. The injectors are mounted in the intake manifold, and fired in groups rather than individually.

NOX:
Oxides of Nitrogen. The system EGR and Camshafts injects exhaust gases into the intake manifold to reduce these gases at the tailpipe.

O2S:
Oxygen Sensor. Generates a voltage of 0.6 to 1.1 volts when the exhaust gas is rich (low oxygen content). The voltage changes to 0.4 volts or less when the exhaust gas is lean (high oxygen content). This sensor only operates after it reaches a temperature of approximately 349°F (660°F). O2 sensors are usually found both upstream and downstream of the catalytic converter. The PCM uses these sensors to fine tune the air-fuel ratio and to monitor the efficiency of the catalytic converter. See Bank 1, Bank 2, Sensor 1, Sensor 2.

OBD II:
On-Board Diagnostics, Second Generation. OBD II is a U.S. Government-mandated standard requiring all cars and light trucks to have a common data connector, connector location, communication protocol, DTCs and code definitions. OBD II first appeared on vehicles in late 1994, and is required to be present on all cars sold in the US after January 1, 1996.

ODM:
Output Device Monitor.

Open Loop (OL):
A control system mode that does not monitor the output to verify if the desired results were achieved. A fuel delivery system usually operates in open loop mode during cold engine warm-up because the oxygen sensors are not yet ready to send a signal. Without the oxygen sensor signal, the computer cannot check the actual results of combustion.
Glossary

PCM:
Powertrain Control Module. The brains of the engine and transmission control systems housed in a metal box with a number of sensors and actuators connected via a wiring harness. Its job is to control fuel delivery, idle speed, spark advance timing, and emission systems. The PCM receives information from sensors, then energizes various actuators to control the engine. The PCM is also known as the ECM (Engine Control Module).

Pending Codes:
Also referred to as Continuous Memory codes and Maturing Diagnostic Trouble Codes. Pending Codes may be set by emission related powertrain components and systems. If the fault does not occur after a certain number of drive cycles, the code is erased from memory.

PID:
Parameter Identification. Identifies an address in memory which contains vehicle operating information.

PNP:
Park/Neutral Position. A switch that tells the PCM when the gear shift lever is in the Park or Neutral position. When in Park or Neutral, the PCM operates the engine in an idle mode.

PROM:
Programmable Read-Only Memory. The PROM contains programming information the PCM needs to operate a specific vehicle model/engine combination.

PSPS:
Power Steering Pressure Switch

Purge Solenoid:
Controls the flow of fuel vapors from the carbon canister to the intake manifold. The canister collects vapors evaporating from the fuel tank, preventing them from escaping to the atmosphere and causing pollution. During warm engine cruise conditions, the PCM energizes the Purge Solenoid so the trapped vapors are drawn into the engine and burned.

PWM:
Pulse Width Modulated

PZM:
Platform Zone Module

QDM:
Quad Driver Module

RAM:
Random Access Memory

Relay:
An electromechanical device in which connections in one circuit are switched.

Reluctance Sensor:
A type of sensor typically used to measure crankshaft or camshaft speed and/or position, driveshaft speed, and wheel speed.
Glossary

ROM: Read-Only Memory. Permanent programming information stored inside the PCM, containing the information the PCM needs to operate a specific vehicle model/engine combination.

RPM: Revolutions Per Minute

SAE: Society of Automotive Engineers.

Scan Tool: A device that interfaces with and communicates information on a data link.

SDM: Sensing and Diagnostic Module

Sensor x: A standard term used to identify the location of oxygen sensors. Sensor 1 is located upstream of the catalytic converter. See O2S, Bank 1, Bank 2.

Sensor: Any device that reports information to the PCM. The job of the sensor is to convert a parameter such as engine temperature into an electrical signal that the PCM can understand.

SFI or SEFI: Sequential Fuel Injection or Sequential Electronic Fuel Injection. A fuel injection system that uses one or more injectors for each cylinder. The injectors are mounted in the intake manifold and are fired individually.

Solenoid: A device consisting of an electrical coil which when energized, produces a magnetic field in a plunger, which is pulled to a central position. A solenoid may be used as an actuator in a valve or switch.

STFT: Short Term Fuel Trim.

STS: Service Throttle Soon

TAC: Throttle Actuator Control

TBI: Throttle Body Injection. A fuel injection system having one or more injectors mounted in a centrally located throttle body, as opposed to positioning the injectors close to an intake valve port. TBI is also called Central Fuel Injection (CFI) in some vehicles.

TCC: Torque Converter Clutch

TCM: Transmission Control Module

TCS: Traction Control System for PCM and brakes
Glossary

TDC:
Top Dead Center. When a piston is at its uppermost position in the cylinder.

TFP:
Transmission Fluid Pressure

TFT:
Transmission Fluid Temperature (Sensor)

Throttle Body:
A device which performs the same function as a carburetor in a fuel injection system. On a throttle body injection (TBI) system, the throttle body is both the air door and the location of the fuel injectors. On port fuel injection systems (PFI, MPFI, SFI, etc.), the throttle body is simply an air door. Fuel is not added until the injectors at each intake port are activated. In each case, the throttle body is attached to the accelerator pedal.

TPS:
Throttle Position Sensor. Potentiometer-type sensor connected to the throttle shaft. Its voltage signal output increases as the throttle is opened. The PCM uses this signal to control many systems such as idle speed, spark advance, fuel delivery, etc.

Traction Assist:
Assist in traction with brakes only.

Trip:
Vehicle operation for a period of time so the systems can be monitored.

TTS:
Transmission Temperature Sensor. A resistance sensor mounted in the transmission housing in contact with the transmission fluid. It sends a voltage signal to the PCM indicating the temperature of the transmission.

VECI:
Vehicle Emission Control Information. A decal located in the engine compartment containing information about the emission control systems found on the vehicle. The VECI is the authoritative source for determining whether a vehicle is OBD II compliant.

VIN:
Vehicle Identification Number. This is the factory-assigned vehicle serial number. This number is stamped on a number of locations throughout the vehicle, but the most prominent location is on top of the dashboard on the driver’s side, visible from outside the car. The VIN includes information about the car, including where it was built, body and engine codes, options, and a sequential build number.

VSS:
Vehicle Speed Sensor. Sends a frequency signal to the PCM. The frequency increases as the vehicle moves faster to give the PCM vehicle speed information used to determine shift points, engine load, and cruise control functions.

VTD:
Vehicle Theft Deterrent
Glossary

Warm-up Cycle:
Warm-up cycle is when the engine coolant temperature rises at least 40 degrees above that at engine start up.

WOT:
Wide-Open Throttle. The vehicle operating condition brought about when the throttle is completely (or nearly) open. The PCM typically delivers extra fuel to the engine and de-energizes the A/C compressor at this time for acceleration purposes. The PCM uses a switch or the TPS to identify the WOT condition.
Declaration of Conformity

This product is declared to be in compliance with the European RoHS Directive 2002/95/EC which restricts the following substances in electrical and electronic equipment.

![RoHS 2002/95/EC]

<table>
<thead>
<tr>
<th>Substance</th>
<th>Maximum Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd)</td>
<td>100 ppm</td>
</tr>
<tr>
<td>Hexavalent Chromium (CrVI)</td>
<td>1000 ppm</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>1000 ppm</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>1000 ppm</td>
</tr>
<tr>
<td>Polybrominated Biphenyls (PBB)</td>
<td>1000 ppm</td>
</tr>
<tr>
<td>Polybrominated Diphenyl Ethers (PBDE)</td>
<td>1000 ppm</td>
</tr>
</tbody>
</table>

This product is declared to conform to the following standard under the EMC directive 89/336/EEC.

EN 61326-1:2006

Disposal Information

This product should be disposed of separately from household waste. When the product reaches its end of life, dispose of it according to local laws and regulations.

Matthew Koran
Hardware Development Manager
SPX Corporation
Service Solutions
Brook Park, Ohio, USA

April 27, 2011
Limited Warranty

THIS WARRANTY IS EXPRESSLY LIMITED TO ORIGINAL RETAIL BUYERS OF SPX ELECTRONIC DIAGNOSTIC TOOLS (“UNITS”).

SPX Units are warranted against defects in materials and workmanship for one year (12 months) from date of delivery. This warranty does not cover any Unit that has been abused, altered, used for a purpose other than that for which it was intended, or used in a manner inconsistent with instructions regarding use. The sole and exclusive remedy for any Unit found to be defective is repair or replacement, the option of SPX. In no event shall SPX be liable for any direct, indirect, special, incidental or consequential damages (including lost profit) whether based on warranty, contract, tort or any other legal theory. The existence of a defect shall be determined by SPX in accordance with procedures established by SPX. No one is authorized to make any statement or representation altering the terms of this warranty.

DISCLAIMER

THE ABOVE WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

SOFTWARE

Unit software is proprietary, confidential information protected under copyright law. Users have no right in or title to Unit software other than a limited right of use revocable by SPX. Unit software may not be transferred or disclosed without written consent of SPX. Unit software may not be copied except in ordinary backup procedures.

TECHNICAL SUPPORT

If you have any questions on the operation of the product, please call Tech services at 1-800-228-7667.

REPAIR SERVICE

• Please contact Technical Support for troubleshooting and service options prior to sending any unit in for repair.
• To send a unit in for repair, go to www.Repairtrack.spx.com and follow the online instructions. This website will also have the latest Service policies and service center locations. If you do not have internet access, please call 1-800-344-4013.